(VI.D) Generalized Eigenspaces

Let \(T : \mathbb{C}^n \to \mathbb{C}^n \) be a fixed linear transformation. For this section and the next, all vector spaces are assumed to be over \(\mathbb{C} \); in particular, we will often write \(V \) for \(\mathbb{C}^n \). In what follows, I will write “\(S \)” for an “arbitrary” transformation, which could be \(T \), or \(\sigma \mathbb{I} - T \), or its restriction to a subspace, etc.

We are looking for forms \(A = [T]_\ell \) can be put into (via \(S_B^{-1} A S_B \)) even if it is not diagonalizable. The structure underlying the rational canonical form was a decomposition of \(V = \mathbb{C}^n \) into \(T \)-cyclic subspaces in 1-1 correspondence with the nontrivial invariant factors \(\Delta_r(\lambda), \ldots, \Delta_n(\lambda) \) of \(A \). In the present section we describe the structure beneath the Jordan canonical form – which, unlike the rational form, actually reduces to \(D \) when \(A \) is diagonalizable (\(= S_B D S_B^{-1} \)). We can forget about most of the \(F[\lambda] \) stuff here; the theory is fortunately easier than that in the last two sections.

Recall that if \(A \) is diagonalizable with eigenvalues \(\{\sigma_1, \ldots, \sigma_m\} \),\(^1\) then \(V \) is the sum of the corresponding eigenspaces and in fact the geometric multiplicities add to \(n \):

\[
\sum \dim E_{\sigma_i}(A) = n.
\]

In the language of direct sums,

\[
V = E_{\sigma_1}(A) \oplus \cdots \oplus E_{\sigma_m}(A).
\]

What we claim is that there are “generalized” eigenspaces \(E^s_{\sigma_i} \) such that

\[
V = E^s_{\sigma_1}(A) \oplus \cdots \oplus E^s_{\sigma_m}(A)
\]

\(^1\)Here we mean the list of distinct eigenvalues, i.e. not repeated according to multiplicity.
even if A is not diagonalizable.

The proof will require a few facts about stable image/kernel, and nilpotent transformations ($S : U \to U$ such that S^k is the zero transformation for some k). Throughout it is important to remember that if $W \subseteq V$ is closed under the action of T then the restriction of T to W makes sense as a linear transformation and is written $T|_W$ (and read “T on W”).

Stable Image and Kernel. Given a transformation $S : V \to V$, the series of subspaces of V

$$\{0\} = \ker I \subseteq \ker S \subseteq \ker S^2 \subseteq \ldots$$

and

$$V = \im I \supseteq \im S \supseteq \im S^2 \supseteq \ldots$$

both level off at some point (since V is finite dimensional). Let K be sufficiently large that

$$\im S^K = \im S^{K+1} = \ldots$$

$$\ker S^K = \ker S^{K+1} = \ldots ;$$

these are called the **stable image** and **stable kernel** of S. An equivalent definition of these objects (subspaces of V) is:

$$\ker^s S = \left\{ \vec{w} \in V \mid S^k \vec{w} = 0 \text{ for some } k \right\}$$

$$\im^s S = \left\{ \vec{w} \in V \mid \text{for every } k, \exists \vec{v} \in V \text{ s.t. } \vec{w} = S^k \vec{v} \right\} .$$

Remark 1. The \vec{v} such that $S^k \vec{v} = \vec{w}$ in the second definition are in general different for each k (even for $k \geq K$).

We claim that

(i) $\im^s S \cap \ker^s S$, \hspace{1cm} (ii) $\im^s S + \ker^s S = V$.

To see (i), let $\vec{w} \in \im^s S \cap \ker^s S$; that is, $\vec{w} = S^k \vec{v}$ and $S^k \vec{w} = 0$, so that $0 = S^k(S^k \vec{v}) = S^{2k} \vec{v}$. But then $\vec{v} \in \ker S^{2K} = \ker^s S = \ker S^K$, so that $(\vec{w} =) S^k \vec{v} = 0$.
To see (ii), apply rank-nullity to S^K to get

$$\dim V = \dim(\text{im}S^K) + \dim(\ker S^K) = \dim(\text{im}^sS) + \dim(\ker^sS),$$

and the “modular law” $\dim(W_1 + W_2) + \dim(W_1 \cap W_2) = \dim W_1 + \dim W_2$ (cf. Exercise II.C.2) for subspaces $W_1, W_2 \subseteq V$ to get

$$(\text{im}^sS) + \dim(\ker^sS) = \dim(\text{im}^sS \cap \ker^sS) + \dim(\text{im}^sS + \ker^sS) \tag{i}$$

Combining this with (1), $\dim(\text{im}^sS + \ker^sS) = \dim V$ and (ii) follows. We rewrite (i) and (ii) as

$$V = \text{im}^sS \oplus \ker^sS.$$

This is always true, for any $S : V \rightarrow V$. Moreover, since S respects this decomposition (as you can check), one may speak of the restrictions $S|_{\ker^sS}$ and $S|_{\text{im}^sS}$. By definition some power k of S annihilates \ker^sS, and so $S|_{\ker^sS}$ is nilpotent. On the other hand,

$$\ker(S|_{\text{im}^sS}) = \ker S \cap \text{im}^sS \subseteq \ker^sS \cap \text{im}^sS = \{0\}$$

by (i) above, and thus $S|_{\text{im}^sS}$ is invertible. We have proved

Proposition 2. Given any $S : V \rightarrow V$, there is a direct-sum decomposition

$$V = U_0 \oplus W_0$$

respected by S, such that $S|_{W_0}$ is nilpotent and $S|_{U_0}$ is invertible.

Now let’s look more generally at the situation where S respects a (possibly different) direct sum decomposition $V = U \oplus W$. We claim that

(a) $\ker S = (U \cap \ker S) + (W \cap \ker S)$, and
(b) $(U \cap \ker S) \cap (W \cap \ker S) = \{0\}$.

Now (b) is immediate since $U \cap W = \{0\}$. To see (a): take any $\vec{v} \in \ker S$ and write it $\vec{v} = \vec{u} + \vec{w}$ (possible because $V = U \oplus W$); clearly $0 = S\vec{v} = S\vec{u} + S\vec{w}$. Since S respects $U \oplus W$, $S\vec{u} \in U$ and $S\vec{w} \in W$, but then $S\vec{u} = -S\vec{w}$ is a “problem” since $U \cap W = \{0\}$. So we must
have $Su = Sw = 0$. That means $u \in U \cap \ker S$, $w \in W \cap \ker S$, and since \bar{v} is their sum we have proved (a).

Of course (a)+(b) $\implies \ker S = (U \cap \ker S) \oplus (W \cap \ker S)$, so applying this to S^k we get

Proposition 3. Given $S : V \to V$ respecting some direct-sum decomposition

$$V = U \oplus W,$$

one has

$$\ker S^n = (U \cap \ker S) \oplus (W \cap \ker S).$$

Nilpotent Transformations. Every $S : V \to V$ has an eigenvalue (unless $V = \{0\}$), since the characteristic polynomial $f_S(\lambda)$ has a root in \mathbb{C}. (This is where we really need $V = \mathbb{C}^n$.) This eigenvalue has at least one nonzero eigenvector. What if zero is the only one?

Proposition 4. S is nilpotent $\iff 0$ is its only eigenvalue.

Proof. (\iff) Suppose $0 = $ only eigenvalue of $S = $ only root of $f_S(\lambda)$. That is, $f_S(\lambda) = \lambda^n$. By Cayley-Hamilton, S satisfies its own characteristic polynomial, so $S^n = 0$.

(\Rightarrow) Suppose $S^k = 0$, and also suppose λ is an eigenvalue of S. There is a nonzero \bar{v} such that $S\bar{v} = \lambda\bar{v}$, and thus

$$0 = S^k\bar{v} = \lambda^k\bar{v} \implies \lambda^k = 0 \implies \lambda = 0.$$

□

Stable Eigenspace. Given λ and eigenvalue of $S : V \to V$ ($\iff \lambda$ any root $\in \mathbb{C}$ of $f_S(\lambda)$), recall the definition

$$E_\lambda(S) := \ker(\lambda \mathbb{I} - S) = \{\bar{v} \in V \mid (\lambda \mathbb{I} - S)\bar{v} = 0\}$$

of the eigenspace of λ. Define the generalized or stable eigenspace

$$E^s_\lambda(S) := \ker(\lambda \mathbb{I} - S) = \{\bar{v} \in V \mid (\lambda \mathbb{I} - S)^k\bar{v} = 0 \text{ for some } k\}.$$

Clearly $E^s_\lambda(S) \supseteq E_\lambda(S)$.
Now we return to our original $T : V \to V$ with distinct eigenvalues $\{\sigma_1, \ldots, \sigma_m\}$, and set

$$W_k = E_{\sigma_k}^s(T).$$

(These are not the W_k’s of §VI.C!) Clearly some power of $(\sigma_k \mathbb{I} - T)$ annihilates W_k, so that $(\sigma_k \mathbb{I} - T) |_{W_k}$ is nilpotent and has only eigenvalue 0. That is, if $\vec{v} \in W_k$ satisfies

$$(\sigma_k \mathbb{I} - T)\vec{v} = \lambda \vec{v},$$

then $\lambda = 0$. Therefore, if $\vec{v} \in W_k$ satisfies

$$T \vec{v} = \sigma \vec{v},$$

then

$$(\sigma_k \mathbb{I} - T)\vec{v} = (\sigma_k - \sigma) \vec{v}$$

and $\sigma_k - \sigma$ must be 0, i.e. $\sigma = \sigma_k$.

Conclusion: the only eigenvalue of $T |_{W_k}$ is σ_k.

Now consider for $i \neq j$ the intersection of two stable eigenspaces $W_i \cap W_j$.

The only eigenvalue of $T |_{W_i}$ is σ_i, while the only eigenvalue of $T |_{W_j}$ is σ_j. Since $\sigma_i \neq \sigma_j$, $T |_{W_i \cap W_j}$ can have no eigenvalue. This is absurd unless $W_i \cap W_j = \{0\}$.

Proposition 5. $E_{\sigma_i}^s(T) \cap E_{\sigma_j}^s(T) = \{0\}$ for all $i \neq j$.

We make one further observation concerning stable eigenspaces: how to find bases for them. You know how to find bases for kernels. Working in the standard basis of \mathbb{C}^n (in terms of which $[T]_e = A$ by definition), find bases for

$$\ker(\sigma_i \mathbb{I} - A) \subseteq \ker\left\{(\sigma_i \mathbb{I} - A)^2\right\} \subseteq \ker\left\{(\sigma_i \mathbb{I} - A)^3\right\} \subseteq \ldots.$$
You stop when two successive bases have the same number of elements (once \(\ker S^k = \ker S^{k+1} \), all the remaining ones are the same as well: a nice exercise!).

The Jordan Structure Theorem. Here is what holds even when \(T \) is not semisimple (\(\Leftrightarrow A \) is not diagonalizable). We emphasize that the \(W_k \) have nothing to do with those in the preceding lecture.

Theorem. Let \(T : V \to V (V = \mathbb{C}^n) \) be a linear transformation, with distinct eigenvalues \(\{ \sigma_1, \ldots, \sigma_m \} \) and corresponding stable eigenspaces \(W_k = E^{s}_{\sigma_k}(T) = \ker^s(\sigma_k I - T) \). Then

\[
V = W_1 \oplus \cdots \oplus W_m
\]

where \(\dim W_k \) = algebraic multiplicity of \(\sigma_k \). Furthermore, \(T \) respects this decomposition.

Proof. We first prove the decomposition, by induction on \(m \). Set \(d_k = \dim W_k \), and \(A = [T]_S \).

Case \(m = 1 \) : \(\sigma_1 \) = the only eigenvalue of \(T \) on \(V \implies 0 = \) only eigenvalue of \((\sigma_1 I - T) \) on \(V \implies (\sigma_1 I - T) \) nilpotent \(\implies (\sigma_1 I - T)^k = 0 \implies V = \ker^s(\sigma_1 I - T) = W_1 \).

Inductive Step : Assume the Theorem holds for transformations with \(m - 1 \) distinct eigenvalues, and let \(T \) be as above. Apply the discussion preceding Proposition 2 to \((\sigma_m I - T) \) to get

\[
V = \ker^s(\sigma_m I - T) \oplus \im^s(\sigma_m I - T) =: W_m \oplus U_m,
\]

where \(\sigma_m I - T \) respects the decomposition. Moreover, since \(I \) also respects the direct sum (or, for that matter, and direct sum!), so do \(T \) and \(\sigma_k I - T \), \(k \neq m \). So we may speak of \(T |_{U_m} : U_m \to U_m \).

Since \((\sigma_m I - T) \) is invertible on \(U_m \), \(\sigma_m \) cannot be an eigenvalue of \(T \) there. \(^2\)

Thus \(T |_{U_m} \) has eigenvalues \(\subseteq \{ \sigma_1, \ldots, \sigma_{m-1} \} \), and by induction

\[
U_m = \prime W_1 \oplus \cdots \oplus \prime W_{m-1},
\]

\(^2\)(\(\sigma_m I - T |_{U_m} \) invertible \(\implies \) \(\det (\sigma_m I - T |_{U_m}) \neq 0 \implies \sigma_m \) not a root of \(\det (\lambda I - T |_{U_m}) \).
where
\[\prime W_k = \ker^s (\sigma_k I - T | U_m) = \ker^s (\sigma_k I - T) \cap U_m = W_k \cap U_k. \]

We must show that \(\prime W_k = W_k \).

Since \((k \neq m) \sigma_k I - T \) also respects the decomposition \(V = W_m \oplus U_m \), we have (Prop. 3)
\[W_k = \ker^s (\sigma_k I - T) = \{ W_m \cap \ker^s (\sigma_k I - T) \} \oplus \{ U_m \cap \ker^s (\sigma_k I - T) \} = W_m \cap W_k \oplus U_m \cap W_k. \]

By Prop. 4, \(W_m \cap W_k = \{ 0 \} \) and so
\[W_k = U_m \cap W_k = \prime W_k, \]
as desired.

\(T \) respects the direct sum: We need to show \(T(W_k) \subseteq W_k \). Take \(\bar{w} \in \ker^s (\sigma_k I - T) \), so that for \(\kappa \) sufficiently large \((\sigma_k I - T)\kappa \bar{w} = 0 \). But then \((\sigma_k I - T)^k T \bar{w} = T(\sigma_k I - T)^k \bar{w} = 0 \implies T \bar{w} \in \ker^s (\sigma_k I - T) \).

\(d_k = \) algebraic multiplicity of \(\sigma_k \) (as roots of \(p_A(\lambda) \)) : We take \(B_1, \ldots, B_m \) to be bases for \(W_1, \ldots, W_m \); the collection \(B = \{ B_1, \ldots, B_m \} \) yields a basis for \(V \) “subordinate to the direct sum”. Since \(T \) respects the direct sum, its matrix with respect to \(B \) splits into blocks down the diagonal (of dimensions \(d_1 \times d_1, \ldots, d_m \times d_m \)):
\[
[T]_B =: B = S_B^{-1} A S_B = \text{diag}\left\{ [T|_{W_1}]_{B_1}, \ldots, [T|_{W_m}]_{B_m} \right\} = \text{diag}\left\{ B_1, \ldots, B_m \right\}.
\]

Moreover, since \(A \sim B, \lambda I - A \sim \lambda I - B \) and \(f_A(\lambda) = f_B(\lambda) \). From
\[
\lambda I - B = \text{diag}\left\{ \lambda I_{d_1} - B_1, \ldots, \lambda I_{d_m} - B_m \right\}
\]
we have
\[
f_B(\lambda) = \det(\lambda I - B) = \prod_k \det(\lambda I_{d_k} - B_k) = f_{B_1}(\lambda) \cdots f_{B_m}(\lambda).
\]

Since the only eigenvalue of \(T|_{W_k} \) is \(\sigma_k \) (and \(B_k = [T|_{W_k}]_{B_k} \)) the only root of \(f_{B_k}(\lambda) \) is \(\sigma_k \). Since \(B_k \) is \(d_k \times d_k \), it follows that \(\deg(f_{B_k}) = d_k \).
and so $f_{B_k}(\lambda) = (\lambda - \sigma_k)^{d_k}$. But then $(f_A(\lambda) =)$

$$f_B(\lambda) = \prod (\lambda - \sigma_k)^{d_k}$$

and we are done. \hfill \square

Exercises

1. Find the stable eigenspaces of

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

2. Suppose A is an 8×8 matrix with $m_A(\lambda) = \lambda(\lambda - 1)^2(\lambda - 2)^3$

and $f_A = \lambda^2(\lambda - 1)^2(\lambda - 2)^4$. What are the dimensions of the eigenspaces and stable eigenspaces of A?

3. Show that for any transformation $S : C^n \rightarrow C^n$, $\ker(S^k) = \ker(S^{k+1})$ implies

(a) $\ker(S^k) = \ker(S^\ell)$ for all $\ell \geq k$, and

(b) $\im(S^k) = \im(S^\ell)$ for all $\ell \geq k$. [Hint for (b): use Rank + Nullity and (a).]