We now begin the more systematic investigation of equations of
degree two and three.\footnote{For degree one, see the material on linear Diophantine equations in [NZM].}

The equation $x^2 + y^2 = z^2$ (*Pythagorean triples*). First note that from any solution we get infinitely many by (kx, ky, kz), $k \in \mathbb{Z}$.

Definition 1. A triple $(a, b, c) \in \mathbb{Z}^3$ is **primitive** if $\gcd(a, b, c) = 1$, and **Pythagorean** if $a^2 + b^2 = c^2$.

We shall now find all primitive Pythagorean triples. First, we cannot have $a, b, c \equiv 0 \pmod{2}$ (since the gcd is 1); and so a and b cannot both be even (otherwise, c would be). If a and b were both odd, then $a^2 + b^2 \equiv 1 + 1 = 2$; but $c^2 \equiv 2$ is impossible! Without loss of generality we can therefore assume a even and b odd, hence c odd.

Next, put $a = 2n$, and note that $a^2 = c^2 - b^2 = (c - b)(c + b)$. \footnote{For degree one, see the material on linear Diophantine equations in [NZM].}

Put $c - b = 2v$, $c + b = 2w$; we then have

$$(2n)^2 = 2v \cdot 2w$$

hence

$$n^2 = vw$$

where $n, v, w \neq 0$. If a prime $g \mid v, w$, then g divides $w - v = b$ and $w + v = c$, which gives $g \mid a$, a contradiction. Therefore $(v, w) = 1$.

But if v and w have no common prime factors, the Fundamental Theorem of Arithmetic (unique factorization in \mathbb{Z}) together with equation (1) imply $v = r^2$ and $w = s^2$. We conclude that $b = w - v = s^2 - r^2$, $c = w + v = s^2 + r^2$, and $a^2 = 4n^2 = 4vw = 4r^2s^2 = (2rs)^2$.
\[\Rightarrow \quad a = 2rs. \] Conversely, we can check that each such triple is Pythagorean (try it!), proving the

Theorem 2. The complete list of primitive Pythagorean triples is

\[
\left\{ (2rs, s^2 - r^2, s^2 + r^2) \mid r, s \in \mathbb{Z} \setminus \{0\}; \ (r, s) = 1; \ r, s \text{ not both odd} \right\}.
\]

(To get all Pythagorean triples, change the conditions on \(r, s \) to just \(r, s \in \mathbb{Z} \).)

Remark 3. It is easy to see that \((r, s) = 1 \Rightarrow \) no odd prime factor of \(r \) can divide \(s^2 - r^2 \) or \(s^2 + r^2 \). But what about 2? 2 divides 2rs, and will divide \(s^2 \pm r^2 \Leftrightarrow s \) and \(r \) are both even or both odd. If \((r, s) = 1 \) they can’t both be even.

Example 4. \(r = 40 \) and \(s = 81 \) give \((a, b, c) = (6480, 4961, 8161) \). So \(4961^2 + 6480^2 = 8161^2 \) (apparently written down by the Babylonians!).

The equation \(c^2 - b^2 = n \). We shall seek, for given \(n \) (e.g. \(a^2 \) in the Pythagorean equation), the number of solutions to this one.

Definition 5. \(\sigma_k(n) := \sum_{d|n} d^k \) (for \(n \in \mathbb{N} \)), so in particular \(\sigma_0(n) \) is the number of positive divisors of \(n \).

The table

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_0(n))</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

suggests

Lemma 6. \(\sigma_0(n) \) odd \(\iff \) \(n \) is a square.

Proof. Factors come in pairs \(d \) and \(\frac{n}{d} \), unless (when \(d = \sqrt{n} \)) \(n \) is a square. \(\square \)

Lemma 7. \(\sigma_0(p^m) = m + 1 \).

Proof. Since this is obvious, I’ll prove that a cow has nine legs instead. A cow has four more legs than no cow. No cow has five legs. Done. \(\square \)
Lemma 8. \(\sigma_0 \) is multiplicative: \((m, n) = 1 \implies \sigma_0(mn) = \sigma_0(m)\sigma_0(n)\).

Proof. The divisors of \(mn \) are \(de \) where \(d \mid m \) and \(e \mid n \). In fact, the correspondence between such pairs \((d, e)\) and divisors of \(mn \) is bijective: for if \((d', e')\) is another such pair, and \(d'e' = de \), then \((m, n) = 1 \implies (e', d) = 1 = (e, d') \implies d' = d \) and \(e' = e \).

So if we write \(n = \prod p_i^{m_i} \) as a product of powers of distinct primes, then

\[
\sigma_0(n) = \prod_i (m_i + 1).
\]

Now suppose \((x, y)\) is a solution to our equation, with \(x, y > 0 \). Put \(d = x + y, e = x - y \), so that \(de = n \). Since \(d + e = 2x, d \equiv e \) (2); and since \(d - e = 2y > 0, d > e \). Hence

\[
(x, y) \in \mathcal{S} := \left\{ \left(\frac{d+e}{2}, \frac{d-e}{2} \right) \middle| d > e > 0, de = n, d \equiv e \right\},
\]

and conversely each element of \(\mathcal{S} \) provides a solution.

Theorem 9. The number of elements in \(\mathcal{S} \) is

\[
|\mathcal{S}| = \begin{cases}
\frac{1}{2} \sigma_0(n) & \text{if } n \text{ odd nonsquare}, \\
\frac{\sigma_0(n)-1}{2} & \text{if } n \text{ odd square}, \\
\frac{1}{2} \sigma_0\left(\frac{n}{4}\right) & \text{if } n \text{ even nonsquare (div. by 4)}, \\
\frac{\sigma_0\left(\frac{n}{4}\right)-1}{2} & \text{if } n \text{ even square (div. by 4)}.
\end{cases}
\]

If \(n \) is even but \(4 \nmid n \), then \(|\mathcal{S}| = 0\).

Proof. \((n \text{ odd})\) If \(de = n \), then \(d \equiv e \) (2) is automatic. Furthermore, \(d \) determines \(e \). So \(|\mathcal{S}| \) is the number of divisors of \(n \) with \(d > \frac{n}{\sqrt{d}} \), i.e. \(d > \sqrt{n} \). Of course, \(e \) is in each case \(\frac{n}{d} \), and if \(n \) is a square then we miss out on \(d = \sqrt{n} = e \).

\((n \text{ even})\) If \(de = n \), then one (hence both) of \(d \) and \(e \) must be even. So \(4 \mid n \) (otherwise there is no solution, and \(|\mathcal{S}| = 0\)). In this case, \(d = 2d', e = 2e' \) and \(d'e' = \frac{n}{4} \); \(\mathcal{S} \) identifies with

\[
\left\{ (d' + e', d' - e') \mid d'e' = \frac{n}{4}, d' > e' > 0 \right\}.
\]

The remainder of the proof is the same as for \(n \text{ odd} \). \(\square \)
Pell’s equation. Let \(d \in \mathbb{N} \) be squarefree, and consider

\[
x^2 - y^2d = \begin{cases}
\pm 1 & \text{if } d \equiv 2,3 \pmod{4} \\
\pm 4 & \text{if } d \equiv 1 \pmod{4}
\end{cases}
\]

This equation is closely related to the quadratic number field \(K = \mathbb{Q}[\sqrt{d}] \) with ring of integers

\[
\mathcal{O}_K := \begin{cases}
\mathbb{Z}[\sqrt{d}] & \text{if } d \equiv 2,3 \pmod{4} \\
\mathbb{Z} \left[\frac{1+\sqrt{d}}{2} \right] & \text{if } d \equiv 1 \pmod{4}
\end{cases}
\]

The units \(\mathcal{O}_K^* \subset \mathcal{O}_K \) are simply the elements which are invertible in \(\mathcal{O}_K \). We claim the following:

Theorem 10. For \(d \equiv 2,3 \pmod{4} \) (resp. \(1 \)), the units \(\mathcal{O}_K^* \) are exactly the numbers \(x + y\sqrt{d} \) (resp. \(\frac{x+y\sqrt{d}}{2} \)) such that \(x, y \) are integers satisfying Pell’s equation (2).

Proof. Assume \(d \equiv 2,3 \pmod{4} \), so that the left-hand side of (2) is the norm

\[
N_K(x + y\sqrt{d}) = (x + y\sqrt{d})(x - y\sqrt{d}) \text{ for } K = \mathbb{Q}[\sqrt{d}].
\]

We may view the norm as a homomorphism

\[
N_K : \mathcal{O}_K \setminus \{0\} \to \mathbb{Z} \setminus \{0\}
\]

of multiplicative monoids (i.e. \(N_K(\alpha \beta) = N_K(\alpha)N_K(\beta) \)).

If \(\alpha = x + y\sqrt{d} \in \mathcal{O}_K^* \), then there exists \(\beta \in \mathcal{O}_K \) with \(\alpha \beta = 1 \)

\[
\implies 1 = N_K(1) = N_K(\alpha \beta) = N_K(\alpha)N_K(\beta)
\]

with both \(N_K(\alpha), N_K(\beta) \in \mathbb{Z} \). Hence \(N_K(\alpha) = \pm 1 \) and \((x, y) \) satisfies Pell.

2The notation \(\mathbb{Z}[\mu] \) (resp. \(\mathbb{Q}[\mu] \)) means in general the ring of polynomials in \(\mu \) with integer (resp. rational) coefficients, but here \(\alpha \) satisfies a quadratic equation \(\mu^2 = d \) or \(\mu^2 = \mu + b \) (\(b \in \mathbb{Z} \) resp. \(\mathbb{Q} \)), so every “polynomial” is equal to a unique expression of the form \(a + b\mu \), with \(a, b \in \mathbb{Z} \) (resp. \(\mathbb{Q} \)). That is, for our purposes here, \(\mathbb{Z}[\mu] = \{ a + b\mu \mid a, b \in \mathbb{Z} \} \).
Conversely, if $N_K(\alpha) = \pm 1$ for some $\alpha = x + y\sqrt{d} \in \mathcal{O}_K$, then (writing $\tilde{\alpha} = x - y\sqrt{d}$) $a\tilde{\alpha} = \pm 1 \implies \alpha(\pm\tilde{\alpha}) = 1 \implies \alpha$ invertible in $\mathcal{O}_K \implies \alpha \in \mathcal{O}_K^*$.

For the case $d \equiv 1 \pmod{4}$, one just has to write $\alpha = \frac{x + y\sqrt{d}}{2}$ so that $4N_K(\alpha) = x^2 - y^2d$, and Pell again is equivalent to $N_K(\alpha) = \pm 1$. □

Powers of units are units, and it turns out that there exists a “fundamental unit” $u = x_1 + y_1\sqrt{d}$ (to be proved in §IV.C) such that

$$\mathcal{O}_K^* = \left\{ \pm u^\ell \mid \ell \in \mathbb{Z} \right\}.$$

Let’s apply this to $d = 5$, for which $\mathcal{O}_K = \mathbb{Z}\left[\frac{1 + \sqrt{5}}{2}\right]$ and

$$\varphi = \frac{1 + \sqrt{5}}{2}$$

— the golden ratio, which satisfies $1 + \varphi = \varphi^2$ — is our u. Writing as above $x + y\sqrt{d} := x - y\sqrt{d}$, and defining $(x_n, y_n) \in \mathbb{Z}^2$ by

$$\varphi^n = \frac{x_n + y_n\sqrt{d}}{2},$$

we have

$$x_n = \varphi^n + \bar{\varphi}^n, \quad y_n = \frac{\varphi^n - \bar{\varphi}^n}{\sqrt{5}}.$$

Since each $\varphi^n \in \mathcal{O}_K^*$, by Theorem 10 each (x_n, y_n) solves the equation

(3) $x^2 - 5y^2 = \pm 4$.

Now $y_0 = 0, y_1 = 1$, and (using $1 + \varphi = \varphi^2, 1 + \bar{\varphi} = \bar{\varphi}^2$)

$$y_{n-2} + y_{n-1} = \frac{\varphi^{n-2} - \bar{\varphi}^{n-2} + \varphi^{n-1} - \bar{\varphi}^{n-1}}{\sqrt{5}}$$

$$= \frac{\varphi^{n-2}(1 + \varphi) - \bar{\varphi}^{n-2}(1 + \bar{\varphi})}{\sqrt{5}}$$

$$= \frac{\varphi^n - \bar{\varphi}^n}{\sqrt{5}}$$

$$= y_n.$$
Therefore the \(\{y_n\} \) are the **Fibonacci numbers**, and the \((\pm x_n, \pm y_n)\) give the complete solutions of (2), which is not just a set but a group (namely \(O^*_Q(\sqrt{5}) \)) of the form [i.e. isomorphic to] \(\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z}) \).