(VI.B) DISCRIMINANTS AND ALGEBRAIC INTEGERS

Given the importance of the integers (and rings of quadratic integers like \(\mathbb{Z}[\sqrt{d}] \)) in this course so far, one might ask: what is the analogue of \(\mathbb{Z} \subset \mathbb{Q} \) for general algebraic number fields?

Definition 1. An algebraic integer is a number \(\alpha \in \mathbb{C} \) that satisfies a monic polynomial equation with integer coefficients:

\[
\alpha^n + a_1\alpha^{n-1} + \cdots + a_n = 0, \quad a_i \in \mathbb{Z}.
\]

The set of all such is denoted by \(\mathring{\mathbb{Z}}(\subset \mathring{\mathbb{Q}}) \). Define, for any algebraic number field \(K \),

\[
\mathcal{O}_K := K \cap \mathring{\mathbb{Z}}.
\]

Theorem 2. \(\mathring{\mathbb{Z}} \) is a ring. (Hence \(\mathcal{O}_K \) is a ring, the ring of integers in \(K \).)

Proof. Let \(\alpha, \beta \in \mathring{\mathbb{Z}} \) satisfy equations

\[
\alpha^n + a_1\alpha^{n-1} + \cdots + a_n = 0, \quad \beta^m + b_1\beta^{m-1} + \cdots + b_m = 0
\]

with \(a_i, b_j \in \mathbb{Z} \). The \(\mathbb{Z} \)-span of \(\{\alpha^i\beta^j\}_{0 \leq i < n, 0 \leq j < m} \) is closed under multiplication by \(\alpha \) and \(\beta \), hence by \(\alpha + \beta \) and \(\alpha \beta \). Set \(\gamma := \alpha \beta \) or \(\alpha + \beta \), \(M_\gamma := \) the matrix (with entries in \(\mathbb{Z} \)) of multiplication by \(\gamma \) with respect to the basis \(\{\alpha^i\beta^j\} \), and \(p_\gamma(\lambda) := \det(\lambda I - M_\gamma) \). Now \(p_\gamma \) is monic and integral, so Cayley-Hamilton \(\implies 0 = p_\gamma(M_\gamma) \implies 0 = p_\gamma(\gamma) \implies \gamma \in \mathring{\mathbb{Z}}. \)

Now consider two polynomials \(f = a_0x^n + \cdots + a_n \) and \(g = b_0x^m + \cdots + b_m \) in \(\mathbb{Z}[x] \), and assume \(\gcd(a_0, \ldots, a_n) = 1 = \gcd(b_0, \ldots, b_m) \).

Given any prime \(p \), if \(a_i \) and \(b_j \) are the coefficients with the smallest subscripts such that \(p \nmid a_i \) and \(p \nmid b_j \), then it is clear that in \(fg = c_0x^{n+m} + \cdots + c_{n+m} \), we have \(p \nmid c_{i+j} \). (Why?) Hence \(\gcd(c_0, \ldots, c_{n+m}) = 1 \).

What if we have two monic polynomials \(F, G \in \mathbb{Q}[x] \) with \(FG = h = x^{m+n} + C_1x^{n+m-1} + \cdots + C_{n+m} \), with all \(C_i \in \mathbb{Z} \)? Let \(\delta_F, \delta_G \in \mathbb{N} \).
be the minimal integers required to clear denominators in the coefficients of F resp. G. Then the coefficients of $f := \delta_F F$ have $\gcd = 1$, as do those of $g := \delta_G G$, hence those of
\[
\delta_G \delta_F h = fg.
\]
On the other hand, h is monic, so the \gcd of its coefficients is 1, hence the \gcd of coefficients of $\delta_G \delta_F h$ is $\delta_G \delta_F$. We conclude that $\delta_G \delta_F = 1$, which is to say F and G were actually integral in the first place.

This demonstrates that if h is reducible in $\mathbb{Q}[x]$, it is actually reducible in $\mathbb{Z}[x]$:

Lemma 3 (Gauss’s Lemma). If a monic $h \in \mathbb{Z}[x]$ is irreducible in $\mathbb{Z}[x]$, it is irreducible in $\mathbb{Q}[x]$.

Now let $m_\alpha \in \mathbb{Q}[x]$ be the (monic) minimal polynomial of $\alpha \in \mathbb{Z}$. By definition, there exists $h \in \mathbb{Z}[x] \setminus \{0\}$ monic with $h(\alpha) = 0$, and we may take h of lowest degree. It is necessarily irreducible in $\mathbb{Z}[x]$: otherwise, $h = h_1 h_2$ would imply $h_1(\alpha) = 0$ or $h_2(\alpha) = 0$, contradicting minimality. In $\mathbb{Q}[x]$, we have $m_\alpha \mid h \implies h = m_\alpha g$, which by Gauss ($\implies g \equiv 1$) gives $m_\alpha \in \mathbb{Z}[x]$. That is:

Theorem 4. The minimal polynomial of an algebraic integer α belongs to $\mathbb{Z}[x]$, and so its conjugates $\sigma_i(\alpha) \in \mathbb{Z}$.

Example 5. $\mathcal{O}_\mathbb{Q} = \mathbb{Q} \cap \mathbb{Z} = \mathbb{Z}$. Why? For any $\alpha \in \mathbb{Q}$, the minimal polynomial $m_\alpha = x - \alpha$. If also $\alpha \in \mathbb{Z}$, $m_\alpha \in \mathbb{Z}[x]$. So $\alpha \in \mathbb{Z}$.

Example 6. Let $K = \mathbb{Q}(\sqrt{d})$, d squarefree. Then I claim that
\[
\mathcal{O}_K = \mathbb{Q}(\sqrt{d}) \cap \mathbb{Z} = \begin{cases}
\mathbb{Z}[\sqrt{d}], & d \equiv 2, 3 \pmod{4} \\
\mathbb{Z}[\frac{1+\sqrt{d}}{2}], & d \equiv 1 \pmod{4}.
\end{cases}
\]
For any $\alpha = a + b \sqrt{d} \in K$ (here $a, b \in \mathbb{Q}$), we have
\[
m_\alpha(x) = (x - (a + b \sqrt{d}))(x - (a - b \sqrt{d})) = x^2 - 2ax + (a^2 - b^2 d).
\]
Now, \(\alpha \in \mathbb{Z} \iff m_\alpha(x) \in \mathbb{Z}[x] \iff 2a, a^2 - b^2d \in \mathbb{Z} \iff A := 2a, B := 2b, a^2 - b^2d \in \mathbb{Z} \iff A, B, A^2 - B^2d \in \mathbb{Z} \iff A, B \in \mathbb{Z} \) and \(A^2 \equiv B^2d \) \((\text{mod } 4)\). If \(d \equiv 2, 3 \) (non-QR mod 4) then the only possibility is \(A, B \) even. If \(d \equiv 1 \) then we must have \(A, B \) even or \(A, B \) odd.

Now let \(K/\mathbb{Q} \) be an algebraic number field of degree \(n \), with embeddings \(\sigma_i : K \hookrightarrow \mathbb{C}, i = 1, \ldots, n \), and \(\alpha \in K \).

Corollary 7. \(\alpha \in \mathcal{O}_K \iff m_\alpha \in \mathbb{Z}[x] \iff p_\alpha \in \mathbb{Z}[x] \quad \iff \begin{cases} \text{Tr}_{K/\mathbb{Q}}(\alpha) \\ \vdots \\ N_{K/\mathbb{Q}}(\alpha) \end{cases} \in \mathbb{Z}, \)

where the ":" are the elementary symmetric polynomials\(^1\) in the conjugates \(\sigma_i(\alpha) \).

(In principle, this gives a method for determining when a given \(\alpha \) belongs to \(\mathcal{O}_K \).)

Proof. \(p_\alpha \) is a power of \(m_\alpha \), and the numbers \(\text{Tr}_{K/\mathbb{Q}}(\alpha), \ldots, N_{K/\mathbb{Q}}(\alpha) \) are just the coefficients of \(p_\alpha(x) = \prod_{i=1}^{\frac{n}{2}} (x - \sigma_i(\alpha)) \). \(\square \)

Definition 8. The **discriminant** of an \(n \)-tuple \(\{\alpha_1, \ldots, \alpha_n\} \subset K \) is given by

\[
\Delta_{K/\mathbb{Q}}(\vec{\alpha}) := \Delta_{K/\mathbb{Q}}(\alpha_1, \ldots, \alpha_n) := \det[\text{Tr}_{K/\mathbb{Q}}(\alpha_i \alpha_j)] \in \mathbb{Q}.
\]

(Note that if the \(\{\alpha_i\} \subset \mathcal{O}_K \), then this is an integer.)

Theorem 9. \(\{\alpha_1, \ldots, \alpha_n\} \) is a basis for \(K/\mathbb{Q} \iff \Delta_{K/\mathbb{Q}}(\vec{\alpha}) \neq 0 \).

Proof. \((\Leftarrow) \) If they aren’t a basis, there exist \(q_i \in \mathbb{Q} \) (not all 0) such that \(\sum q_i \alpha_i = 0 \implies \sum q_i \alpha_i \alpha_j = 0 \quad (\forall j) \implies \sum q_i \text{Tr}(\alpha_i \alpha_j) = 0 \quad (\forall j) \) which gives a dependency on the rows of \(Q(\vec{\alpha}) \implies \det(Q(\vec{\alpha})) = 0 \).\(^1\)

\(^1\)The elementary symmetric polynomials in \(n \) variables (or numbers) \(x_i \) are \(\sum x_i, \sum_{i<j} x_i x_j, \sum_{i<j<k} x_i x_j x_k, \ldots \), and \(x_1 x_2 \cdots x_n \). The first and last (with \(x_i = \sigma_i(\alpha) \)) correspond to trace and norm in the Corollary.
If they are a basis, but \(\Delta(\alpha) = 0 \), then the system
\[\sum_i x_i Tr(\alpha_i \alpha_j) = 0 \quad (j = 1, \ldots, n) \]
has a nontrivial solution \(x_i = q_i \in Q, i = 1, \ldots, n \). Set \(\alpha := \sum q_i \alpha_i (\neq 0, \text{since } \{\alpha\} \text{ is a basis}) \). Then \(Tr(a \alpha_j) = 0 \) (for \(j = 1, \ldots, n \)) and (since \(\{\alpha\} \text{ is a basis} \)) it follows that \(Tr(\alpha \beta) = 0 \) (\(\forall \beta \in K \)). Taking \(\beta = \frac{1}{\alpha} \), we get \(0 = Tr(1) = n \), a contradiction. \(\square \)

Turning to the properties of the discriminant, we have:

Proposition 10. (i) \(\Delta(\alpha) = (\det[\sigma_j(\alpha_i)])^2 \)
(ii) For \(M \in M_n(Q) \) and \(\beta := M\alpha \)
\[\Delta(\beta) = (\det M)^2 \Delta(\alpha) \]

Proof.
(i) Consider the matrix equation
\[[Tr(\alpha_i \alpha_j)] = [\sum_{k=1}^{n} \sigma_k(\alpha_i) \sigma_k(\alpha_j)] = [\sigma_k(\alpha_i)] \cdot \cdot \cdot [\sigma_k(\alpha_j)] \]
and take determinant of both sides.
(ii) The \((i,j)\)th entry of \(M \cdot Q(\alpha) \cdot tM \) is:
\[\sum_{k=1}^{n} \sum_{\ell=1}^{n} M_{ik} Tr(\alpha_k \alpha_\ell) M_{j\ell} = Tr (\sum_k \sum_\ell M_{ik} \alpha_k \alpha_\ell M_{j\ell}) \]
\[= Tr ((\sum_k M_{ik} \alpha_k) (\sum_\ell M_{j\ell} \alpha_\ell)) = Tr(\beta_i \beta_j). \]
So \(M \cdot Q(\alpha) \cdot tM = Q(\beta) \implies \)
\[
\frac{\det(M)}{\Delta(\alpha)} \cdot \frac{\det(Q(\alpha))}{\det M} \cdot \frac{\det(tM)}{\Delta(\beta)} = \frac{\det(Q(\beta))}{\Delta(\beta)}.
\]

\(\square \)

In order to compute some discriminants, we shall need a standard result on Vandermonde determinants:

\[^2\text{i.e. } M \text{ is an } n \times n \text{ matrix and we regard } \alpha, \beta \text{ as column vectors} \]
\[^3\text{here } tM \text{ is the transpose of } M \]
Lemma 11. Let \mathbb{F} be a field and $\{a_i\}_{i=0}^n \subset \mathbb{F}$. Set

$$A := \begin{pmatrix} 1 & a_0 & \cdots & a_0^n \\ 1 & a_1 & \cdots & a_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & \cdots & a_n^n \end{pmatrix} \in M_{n+1}(\mathbb{F}).$$

Then we have

$$\det(A) = \prod_{n \geq i > j \geq 0} (a_i - a_j).$$

Proof. Inductive argument with “base case” ($n = 1$)

$$\det \begin{pmatrix} 1 & a_0 \\ 1 & a_1 \end{pmatrix} = a_1 - a_0.$$

Assume the result holds for $n - 1$ ($n \times n$ matrices) and prove for n, as follows.

Define a function

$$f(t) := \begin{pmatrix} 1 & a_0 & \cdots & a_0^n \\ 1 & a_1 & \cdots & a_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & t & \cdots & t^n \end{pmatrix}$$

and note that $f(a_n) = \det(A)$. By Laplace expansion in the last row, f is a polynomial of degree n, say $\sum_{k=0}^n c_k t^k$. In fact, according to that expansion, the coefficient of t^n is

$$c_n = (-1)^{(n+1)+(n+1)} \det \begin{pmatrix} 1 & a_0 & \cdots & a_0^{n-1} \\ 1 & a_1 & \cdots & a_1^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_{n-1} & \cdots & a_{n-1}^{n-1} \end{pmatrix} = \prod_{n-1 \geq i > j \geq 0} (a_i - a_j),$$

where we have used the inductive hypothesis. Moreover, $f(a_0) = \cdots = f(a_{n-1}) = 0$, since if any of the scalars a_0, \ldots, a_{n-1} are substituted for t, two rows in the matrix are identical (forcing $\det = 0$). Since a polynomial of degree n has at most n roots, this not only tells
us all of them – it tells us that \(f \) breaks up into linear factors

\[
f(t) = c_n(t - a_0) \cdots (t - a_{n-1}) = \prod_{n-1 \geq i > j \geq 0} (a_i - a_j) \times \prod_{n-1 \geq j \geq 0} (t - a_j).
\]

So \(\det(A) = f(a_n) = \prod_{n-1 \geq i > j \geq 0} (a_i - a_j) \times \prod_{n-1 \geq j \geq 0} (a_n - a_j) = \prod_{n \geq i > j \geq 0} (a_i - a_j). \)

\[\square \]

To apply this, write \(K = Q(\theta), p_\theta(X) = \prod_{i=1}^n (X - \theta_i) = \prod_{i=1}^n (X - \sigma_i(\theta)), \) and consider the \(n \)-tuple \(\Theta := \{1, \theta, \theta^2, \ldots, \theta^{n-1}\}. \)

Theorem 12. \(\Delta_{K/Q}(\Theta) = \prod_{r>s}(\theta_r - \theta_s)^2 = (-1)^{\binom{n}{2}} \prod_{r=1}^n p_\theta'(\theta_r) = (-1)^{\binom{n}{2}} N_{K/Q}(p_\theta'(\theta)). \) In particular, since the \(\{\theta_i\} \) are distinct, \(\Delta_{K/Q}(\Theta) \neq 0. \)

Proof. Let \(A \) denote the matrix

\[
\begin{pmatrix}
1 & \theta_1 & \cdots & \theta_1^{n-1} \\
1 & \theta_2 & \cdots & \theta_2^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \theta_n & \cdots & \theta_n^{n-1}
\end{pmatrix}.
\]

Notice that \(^t A \cdot A = Q(\Theta), \) since their \((i, j)\)th entries

\[
\sum_{k=1}^n \theta_k^{i-1} \theta_k^{j-1} = \text{Tr}_{K/Q}(\theta^{i-1} \theta^{j-1})
\]

are equal for any \((i, j)\). Since the discriminant is the determinant of \(Q(\Theta), \) together with Lemma 11 this gives

\[
\Delta(\Theta) = \det(^t A \cdot A) = (\det A)^2 = \prod_{r>s} (\theta_r - \theta_s)^2.
\]

Now \(p_\theta'(X) = \sum_{i=1}^n \prod_{s \neq i} (X - \theta_s) \implies p_\theta'(\theta_r) = \prod_{s \neq r} (\theta_r - \theta_s) \implies \prod_{r=1}^n p_\theta'(\theta_r) = \prod_{s \neq r} (\theta_r - \theta_s) = (-1)^{\binom{n}{2}} \prod_{r>s} (\theta_r - \theta_s)^2 \)
since \(\binom{n}{2} \) is the number of factors in the middle product with \(r < s \). Noting that \(p'_\theta(\sigma_r(\theta)) = \sigma_r(p'_\theta(\theta)) \), we conclude that

\[
\Delta(\Theta) = (-1)^{\binom{n}{2}} \prod_{r=1}^{n} p'_\theta(\theta_r) = (-1)^{\binom{n}{2}} N_{K/Q}(p'_\theta(\theta)).
\]

□

A useful computational tool for getting the most out of this is, for \(q \in Q \) and \(\alpha \in K \),

\[
(1) \quad N(q - \alpha) = \det(\mu_{q-\alpha}) = \det(qI - \mu_\alpha) = p_\alpha(q).
\]

Example 13. Consider \(K = Q(\theta) \), where \(\theta^3 + A\theta + B = 0 \) (\(A, B \in Q \)). That is, \(p_\theta(X) = m_\theta(X) = X^3 + AX + B \), and \([K : Q] = 3 \) (\(K \) is a cubic field). Noting that \(p'_\theta(X) = 3X^2 + A \) and \(p'_\theta(\theta) = 3\theta^2 + A \frac{3\theta + A\theta}{\theta} = \frac{-3A\theta - 3B + A\theta}{0 - \theta} = \frac{-2A \left(\frac{-3B}{2A} - \theta \right)}{0 - \theta}, \)

we compute (using (1))

\[
\Delta_{K/Q}(\{1, \theta, \theta^2\}) = (-1)^{\binom{3}{2}} N(p'_\theta(\theta)) = -N(3\theta^2 + A)
\]

\[
= -N(-2A) \times \frac{N \left(\frac{-3B}{2A} - \theta \right)}{N(0 - \theta)} = -(-2A)^3 \times \frac{p_\theta \left(\frac{-3B}{2A} \right)}{p_\theta(0)}
\]

\[
= 8A^3 \left(\frac{-27B^3}{8A^3} - \frac{3B}{2} + B \right) = - \left(27B^2 + 4A^3 \right).
\]

This should look familiar: \(27B^2 + 4A^3 \) was the “discriminant of the elliptic curve” given by \(Y^2 = X^3 + AX + B \), or more accurately, of the polynomial on its right-hand side.