Problem set 11

Problems 6, 7 and 8 are based on stuff we’ll discuss on Monday.

(1) Write \(X^3 + AX + B = (X - e_1)(X - e_2)(X - e_3) \). Prove that \(4A^3 + 27B^2 = 0 \iff \{ e_i \} \) not all distinct.

(2) Let \(E \) be defined by \(y^2 = x^3 + x + 1 \). Compute the number of points in the group \(E(\mathbb{F}_p) \) for \(p = 3, 5, 7, \) and \(11 \). In each case verify Hasse’s bound \(|a_p| < 2\sqrt{p} \), where \(a_p = |E(\mathbb{F}_p)| - p - 1 \).

(3) With \(E \) as in (2), \(P = (4, 2) \) and \(Q = (0, 1) \) belong to \(E(\mathbb{F}_5) \). Find \(n \) such that \(nP = Q \).

(4) Let \(E \) be an elliptic curve over \(\mathbb{F}_p \), and \(P, Q \in E(\mathbb{F}_p) \). Assume \(Q \in \langle P \rangle \) and let \(n_0 > 0 \) be the smallest solution to \(nP = Q \), and \(s > 0 \) be the smallest solution to \(sP = o \). Prove that every solution to \(Q = nP \) takes the form \(n_0 + is \) for some \(i \in \mathbb{Z} \). [Hint: Write \(n \) as \(is + r \) for some \(0 \leq r < s \) and determine the value of \(r \).]

(5) Adapt the Pollard \(\rho \) algorithm for the DLP (explained in §V.A) to the ECDLP. (Write out the algorithm and briefly justify why it works.)

(6) Let \(E \) be the elliptic curve \(y^2 = x^3 - x \). Find the group structure of \(E(\mathbb{F}_5) \) and \(E(\mathbb{F}_{11}) \).

(7) Alice and Bob agree to use the elliptic Diffie-Hellman key exchange with the prime \(p = 2671 \), elliptic curve \(E: Y^2 = X^3 + 171X + 853 \), and point \(P = (1980, 431) \in E(\mathbb{F}_p) \).

(a) Alice sends to Bob the point \(Q_A = (2110, 543) \). Bob decides to use the secret multiplier \(n_B = 1943 \). What point should Bob send to Alice?

(b) What is their secret shared value?

(c) How difficult is it for Eve to figure out Alice’s secret multiplier \(n_A \)? (Try to find it using PARI.)

(d) Alice and Bob decide to exchange a new piece of secret information using the same prime, curve, and point. This time Alice sends Bob only the \(x \)-coordinate \(x_A = 2 \) of her point \(Q_A \). Bob decides to use the secret multiplier \(n_B = 875 \). What single number modulo \(p \) should Bob send to Alice, and what is their secret shared value?

(8) [HPS] p. 341 #5.16