Problem set 12

Exercises (4)-(8) use material we will discuss on Monday and Wednesday.

(1) Use Lenstra’s elliptic curve factorization algorithm to factor each of the numbers \(N \) using the given elliptic curve \(E \) and point \(P \). (Use PARI.)

 (a) \(N = 589 \), \(E: y^2 = x^3 + 4x + 9 \), \(P = (2, 5) \)

 (b) \(N = 28102844557 \), \(E: y^2 = x^3 + 18x - 453 \), \(P = (7, 4) \).

(2) Verify that the Weil pairing is antisymmetric, bilinear, and that \((P, P) = 1 \). (This should take no more than 3 lines. If you want a more challenging check, try [HPS] #5.27(b).)

(3) [optional] Compute the Weil pairing on the points \(P \) and \(Q \) of Example V.E.7. (You could do it “by hand” or look up Miller algorithm in [HPS] and use that.)

(4) Show that \(N_{K/\mathbb{Q}} \) and \(Tr_{K/\mathbb{Q}} \) are independent of the choice of basis for \(K \) as a vector space over \(\mathbb{Q} \).

(5) Let \(K = \mathbb{Q}(\sqrt{2}) \) where \(\theta = \sqrt{2} \). What are \(m_\theta \) and \([K : \mathbb{Q}] \)? What are the conjugates of \(\theta \), i.e. the other roots of \(m_\theta \)?

(6) With \(K \) as in (3), compute the norm of \(a + b\theta + c\theta^2 \) and the discriminant \(\Delta(1, \theta, \theta^2) \).

(7) Find \(\Delta(1, \sqrt{2}, \sqrt{3}, \sqrt{6}) \) where \(K = \mathbb{Q}(\theta), \theta = \sqrt{2} + \sqrt{3} \).

(8) Compute the minimal polynomial for \(\sqrt{3} + \sqrt{7} \).