Problem set 5

Problems 2 and 9(b) use results we will discuss on Monday.

1. So, Wilson’s theorem said that if \(m \) is prime, then \((m - 1)! \equiv -1 \mod m\).

 Check that the converse holds: i.e. that if \(m \) is composite then the congruence fails. (Of course, this is terribly inefficient as a primality test.)

2. Prove that if \(m \) is a Carmichael number, then it is of the form \(p_1 \cdots p_k \), where \(p_k \) are distinct primes with \(p_i - 1 | m - 1 \). You may use that \(m \) is odd. [Hint: a priori, \(m = \prod p_i^{r_i} \) for some odd primes \(p_i \). Use the Chinese remainder theorem together with a result on primitive roots.]

3. Apply the Miller-Rabin test to 2773. Is it composite or “likely prime”?

4. 8051 is composite. Factor it using Pollard’s \(\rho \) method.

5. Devise a test that will decide in polynomial time whether a given \(n \in \mathbb{N} \) is a perfect power, i.e., of the form \(a^b \) (where \(a, b \in \mathbb{N} \)). (You will recall that “polynomial” essentially means bounded by a constant times a power of \(\log(n) \).)

6. Let \(X \) be a large positive integer. Suppose that \(m \leq X/2 \), and that \(0 \leq a < m \), \(0 \leq b < m \). Explain why the number \(c \) determined by the following algorithm satisfies \(0 \leq c < m \), and \(c \equiv (m)^{ab} \mod m \). Verify that in executing the algorithm, all numbers encountered lie in the interval \([0, X)\).

 1. Set \(k = b \), \(c = 0 \), \(g = \left\lfloor \frac{X}{m} \right\rfloor \).
 2. As long as \(a > 0 \), perform the following operations:
 (a) Set \(r = a - g \left\lfloor \frac{a}{g} \right\rfloor \).
 (b) Choose \(s \) so that \(s \equiv kr \mod m \) and \(0 \leq s < m \).
 (c) Replace \(c \) by \(c + s \).
 (d) If \(c \geq m \), replace \(c \) by \(c - m \).
 (e) Replace \(k \) by \(gk - m \left\lfloor \frac{gk}{m} \right\rfloor \).
 (f) Replace \(a \) by \(\frac{a - r}{g} \).

7. Let \(d \) be a nonzero integer. Show that the ring \(\mathbb{Q}[\sqrt{d}] := \{ q_1 + q_2 \sqrt{d} | q_1, q_2 \in \mathbb{Q} \} \) is in fact a field.

8. Show that there are essentially (i.e. up to isomorphism) only two groups of order 4. [Hint: start by considering what are the possible orders of elements, keeping in mind only the identity “1” has order 1.]

9. (a) Which of the following groups are isomorphic: \((\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/6\mathbb{Z}) \), \((\mathbb{Z}/12\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \), \(\mathbb{Z}/24\mathbb{Z} \), \(S_4 \)?

 (b) What about \(\mathbb{Z}_{35}^* \)?