CHAPTER 10

Local analytic factorization of polynomials

Recall the idea of normalization for an irreducible algebraic curve
C C IP?: there should exist a Riemann surface C mapping holomor-
phically to IP? with C as its image. In Chapter 7 we did this for non-
singular C by using the holomorphic implicit function theorem to
put a complex manifold structure on C itself. This essentially con-
sisted, for each p € C, in exhibiting a neighborhood N, C P2 of p
and a (bi)holomorphic parametrization of A/, N C by some open set
U C C. (The holomorphicity of the transition functions was then a
consequence.)

Now suppose C has an ordinary double point (ODP) at p — recall
that this is a singularity with 2 distinct tangent lines. Denoting dis-
joint union by “I1”, one has

U o,

N,NC ~ ;
P Ol,IlEOUz

that is, C locally looks like two disks Uj, U, (C C) glued together at
one point. In order to normalize C, U; and U, must be “detached”:
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Our overarching goal is to produce C and ¢ as in this figure. Ge-
ometrically it seems clear that the “local analytic curve” N, N C is
reducible, even though the global curve C is not. The first step,
then, will be to find an appropriate formalism (in terms of 2-variable
power series) for working with A, N C, which one might call “ana-
lytic localization.” In this setting, the local equation can be uniquely
factored. This will allow us (in the next Chapter) to carry out local
normalization — that is, put local coordinates on the irreducible com-
ponents of A, N C. Finally, we will patch these parametrizations
together with those of open subsets of C\sing(C) to obtain C.

There are algebraic approaches to “localization” of C at p. For
convenience, replace C for the moment by its affinization in C2. From
§9.3, we have the coordinate ring R = C[C], and to any point p € C
corresponds a maximal ideal in m C R (consisting of polynomials
vanishing at p). Inverting all primes not contained in m, or “local-
izing R at m”, replaces polynomial functions by rational functions
with poles anywhere but p, which roughly corresponds to replacing
C by C minus any set of points not including p. This is quite different
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from intersecting C with an analytic ball at p, and will not produce
a local factorization of a globally irreducible C. Instead of rational
functions, we need convergent power series. The closest construc-
tion in algebra is something called completion (or Henselian localiza-
tion). If you are curious (we won’t get into this), a good reference is
the book by D. Eisenbud.

10.1. Analytic localization

It will suffice to think of C as an affine curve {f(x,y) = 0} C C?
passing through p = (0,0). The defining polynomial f € C[x,y]
is, trivially, a convergent power series; so we may consider how f
factors in O = C{x,y} (cf. §7.1). In fact, for purposes of examining
the intersection of C with a small neighborhood of the origin, we will
show that f may be replaced by an element of C{x}[y] (C O;) in a
particularly nice form:

10.1.1. DEFINITION. The subset! 20 C C{x}[y] of Weierstrass poly-
nomials comprises elements of the form

v+ a(x)y b aga(y +aa(x)  (d € Zx)
where each a;(x) € C{x} satisfies
61](0) =0.

10.1.2. LEMMA. Let f € O, with® f # 0 on the y-axis. Then 3
€,0 > 0 such that:

(@) f#0o0n (i) {|x| <p, |yl =€}and (ii) {x=0,0< |y| <€},
(b) the number of roots (counted with multiplicity) of f(x,y) in y
with |y| < e, is constant in x for |x| < p.

1technically, a submonoid - you can multiply (but not add) elements, and it has
the identity element 1; the notions of “irreducible element” and “uniqueness of
factorization” still have meaning. Since 20 is inside a UFD (see proof of Thm.
10.2.2) and has 1 as its sole unit, it does indeed have unique factorization in a very
strong sense. (See the discussion after the proof of Thm. 10.2.2.)

%In general, if S is some subset of the domain of definition of a function f, one
should read “f # 0 on §” as “f is not identically zero on S”, and “f # 0 on S§”
as “f does not vanish on S” (i.e. f is zero at no point of §) — two very different
meanings. Henceforth the symbols will be used with no further explanation.
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PROOF. The zeroes of f(0,y) are isolated: otherwise they would
have a limit point, forcing f to be identically zero. We may therefore
choose € so that f(0,y) # 0 for 0 < |y| < e. To get (a)(i) from this,
just use continuity and choose p sufficiently small. The number of
roots in (b) is computed by

1 fy (x,y)
dy € Z,
207/ 1 Jiy—e )
which is continuous in x and therefore constant. U]

10.1.3. LEMMA. For f as in Lemma 10.1.2, let {y,(x)},—1 .4 be the
roots described in (b).> Denote the elementary symmetric polynomials in

them by ¢j(x) (= Ty <.y, Yy (%) - - -y, (x)). Then
wi=y' = e ()Y 4 (21) ea(x)
is a Weierstrass polynomial.

PROOF. Note that for each v, y,(0) = 0 from Lemma 10.1.2(a)(i).
Clearly then the e;(x) are well-defined and satisfy ¢;(0) = 0; we must
show that they are holomorphic on {|x| < p}. First we have

1 WSy(oy) P
21 Dy Fley @ = RO = Ak

since the residue at each y, (x) of the argument is

(o () Resyv<x><%> — (o (1)) - ord,, () (f(x,)).

Here the Newton symmetric polynomials oy (x) generate the same alge-

bra over C as the ¢j(x); that is, they can be expressed as polynomials

4

in each other.® From the integral expression, the o} are evidently

holomorphic, and therefore so are the e;. O

3These may well be multivalued on {|x| < p} — in particular, one should expect
them to be permuted as x goes about 0. So the y, (x) are really only well-defined
on some simply-connected subset of the disk {|x| < p} (e.g., deleting the positive
real numbers gives a slit disk).

45ee the exercises; in abstract algebra one shows that they both generate the ring
of symmetric polynomials in the {y, }.



10.2. UNIQUENESS OF LOCAL FACTORIZATION 131

Let 4 := O; C O, denote the units, which are just the invertible
convergent power series, or equivalently the convergent power se-

ries with nonzero constant term. (That is, given g € O, g € il <=
é € 0,))

10.1.4. LEMMA. For f and w as above, there exists a unique u € $l
such that uw = f, and this holds on all of V := {|x| < pand |y| < €}.

PROOEF. Write i := £ € O(V\{w = 0}). For fixed x, w(x,y) =
[1%_,(y — vy(x)), as mutliplying this out gives the ej(x) as coeffi-
cients. Consequently, for each fixed x (with |x| < p), w(x,y) and
f(x,y) have the same roots (in y). Therefore ii # 0 on V, and i(x, y)

is (for each x) holomorphic in y. Now, for any given yo with |yo| < €,

1 a(x/y)d

2ty —1 ly|=€ Y—Yo

Since 7i(x,y) is holomorphic on a neighborhood of |y| = ¢, this for-

ii(x, yo) =

mula shows #(x, ) is holomorphic in x. By Osgood’s lemma, we
have i € O(V). Since @i # 0, it has nonzero constant term #(0,0),
and is thus a unit. Uniqueness is clear since iiw = f and uw = f
— (—uww=0= u—i=0. O

10.2. Uniqueness of local factorization

The uniqueness of u in the last Lemma was trivial. A slightly less
trivial uniqueness question would be: can we write f as a product
of a unit and a Weierstrass polynomial in two different ways —i.e.,
with a different w and u? We cannot:

10.2.1. LEMMA. Given f € Oy (with f # 0 on the y-axis), the de-
composition f = wu in Lemma 10.1.4 (i.e., intow € Wand u € L) is
unique.

PROOF. Since any unit # has #(0,0) # 0, shrinking €, p (hence V)
if necessary, we have u # 0 on V. Thus if f = wu, the zeroes of f and
w are the same. This forces w = [[(y — vy (x)) = y* —er(x)y* 1 +

.-+ (—1)%4(x), which makes w (hence %) unique. O
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Making use of the last two lemmas, we now show that f € O,
factors uniquely (up to units) into irreducibles f; € O,. If f began
its life as a polynomial defining an irreducible algebraic curve C =
{f = 0} C C? then the local piece C NV breaks (uniquely) into
irreducible components {f; = 0}. Provided there is more than one
of them, the f; are no longer polynomials, for that would contradict
(global) irreducibility of C.

10.2.2. THEOREM. O, is a UFD.

PROOF. We need to demonstrate that f € O, factors into irre-
ducibles f; - - - f, uniquely up to order and units.

First, note that O; = C{x} is a UFD: given ¢ € O;, we have a
unique decomposition g(x) = x"0/)i(x), where & is a unit (conver-
gent power series with /1(0) # 0) and vg(f) € Z. The irreducibles in
this case are just the factors of x.

By the Gauss lemma, it follows that C{x}[y] is a UFD.

Next, suppose that f(x,y) = Y, ax"y? € O, vanishes identi-
cally on the y-axis; that is, 0 = £(0,y) = ¥}, agpy’. It follows that all
agp = 0 for all b, so that f = x"fy where v > 0 and fy(0,y) # 0. We
must prove unique factorization for fj.

Let f € Oy with f(0,y) # 0. Lemmas 10.1.4 and 10.2.1 give
f = uw uniquely. Since w belongs to the UFD C{x}[y], we have a
unique decompositionw = hy - - - - - hg into irreducibles i1; € C{x}y].
Clearly also 1;(0,y) # 0, and so Lemma 10.1.4 applied to each #;
gives uniquely h; = u;w;, with each w; a Weierstrass polynomial
irreducible in C{x}[y| (since k; is). This yields w = (ujwy) - - -
(upwy) = (ug - - - up)wy - - - wy =: 6w, and by Lemma 10.2.1 i must be
1. So far we have f = uw; - - - wy.

We do not know yet whether w; is irreducible in O,. If w; =
00" (v, 0" € 0y), then wj(0,y) # 0 = the same thing for o', v".

Lemma 10.1.4 applies to yield v' = v'w’ and v = u"w", so that w; =

(u'u")(w'w"); applying Lemma 10.2.1 yet again gives u'u” =1 —>
w; = w'w”. Butw',w" € W C C{x}[y], contradicting irreducibility

of w; in C{x}[y].
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To see uniqueness, write factorizations f = f1---f; = g1 gk
into irreducibles in O,; we may assume f(0,y) # 0. Then Lemma
10.1.4 gives f] = ujwj and g; = il;w; with w;, @; irreducible Weier-
strass polynomials. We then have

(11 -+ 100) (0n -+ 0g) = (10 -+ 1) (1 -+ ),

sothatby Lemma10.2.1uq - - -uy =iy - - - figand wy - - - wy = Wy - - - Wi.
By uniqueness of factorization in C{x}[y] (and Lemma 10.2.1), the
{w;} and {@;} are the same (up to reordering), and ¢ = k. O

Note the key statement that comes out of this proof: given f € O,
with f(0,y) # 0, we have

(10.2.3) f=uwy---wy,

where u € 4 and w; are Weierstrass polynomials which are irre-
ducible (as Weierstrass polynomials, as elements of C{x}[y], and as
elements of O;). Moreover, this decomposition is completely unique,
up to reordering of the w;. Finally — this also comes out of the proof
— if f was a Weierstrass polynomial, then © = 1 in (10.2.3), and
deg, (f) = Y deg, (w;). This will be useful in working the fol-
lowing problem:s.

Exercises

(1) Show f(x,y) = x*> — x% + y? is (a) irreducible in C[x,y] and (b)
reducible in C{x}[y].

(2) Show g(x,y) = x® — y? is irreducible in C{x}[y].

(3) What form does the factorization in C{x}[y] of the Weierstrass
polynomial f = y* + xy + x* take? (You don’t have to compute
the power series!) How does this correspond to the Newton poly-
gon connecting the (a,b) which appear as exponents (viz., x*y")
in monomial terms of f?°

SMore precisely, the Newton polygon is the boundary of the convex hull of the
sets (a,b) + R2,.
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(4) By considering a few more examples, e.g. y* + xy? + x°, x> + 1>,
and y® + xy* + x?y? + x*y + x®, can you formulate a conjecture
connecting the Newton polygon to the factorization into irre-
ducibles in C{x}[y]?

(5) The proof of Lemma 10.1.3 used the fact that the elementary sym-
metric polynomials ey in {y;}" ; can be expressed as polynomials

in the Newton symmetric polynomials o3 = ", yé‘ . Prove this
by establishing that —ke, = Zé‘zl(—l)iek_ipi. [Hint: substitute
x = y;in[TjLq (x — yo) = T1o(—1)Fex_ix!, then sum over j.]

(6) Adapt the proof of Proposition 8.2.7 to show that any (closed)
complex analytic curve C C IP? (i.e., a subset which in a neighbor-
hood of any point is cut out by the vanishing of a nonconstant
holomorphic function) is in fact algebraic (cut out by a homoge-
neous polynomial). [Suggestion: by applying a projectivity, you
may assume that [0:1:0] is not in C. Note that the intersection of C
with any vertical line x = xg is finite; in a neighborhood of each
intersection point (xg, o), C can be described by a Weierstrass
polynomial in y — yo. Multiply these together to get an element
of C{x — x¢ }[y], monic in y, cutting out C for |x — xp| < p (and all
y). Argue that these local elements patch together to give an el-
ement “TT\"_;(y — ya(x))” in O(C)ly], and then show that O(C)
can be replaced by C|x].]



