
CHAPTER 10

Local analytic factorization of polynomials

Recall the idea of normalization for an irreducible algebraic curve
C ⊂ P2: there should exist a Riemann surface C̃ mapping holomor-
phically to P2 with C as its image. In Chapter 7 we did this for non-
singular C by using the holomorphic implicit function theorem to
put a complex manifold structure on C itself. This essentially con-
sisted, for each p ∈ C, in exhibiting a neighborhood Np ⊂ P2 of p
and a (bi)holomorphic parametrization of Np ∩ C by some open set
U ⊂ C. (The holomorphicity of the transition functions was then a
consequence.)

Now suppose C has an ordinary double point (ODP) at p — recall
that this is a singularity with 2 distinct tangent lines. Denoting dis-
joint union by “∐”, one has

Np ∩ C ≃ U1 ∐ U2

0U1 ≡ 0U2

;

that is, C locally looks like two disks U1, U2 (⊂ C) glued together at
one point. In order to normalize C, U1 and U2 must be “detached”:
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Our overarching goal is to produce C̃ and σ as in this figure. Ge-
ometrically it seems clear that the “local analytic curve” Np ∩ C is
reducible, even though the global curve C is not. The first step,
then, will be to find an appropriate formalism (in terms of 2-variable
power series) for working with Np ∩ C, which one might call “ana-
lytic localization.” In this setting, the local equation can be uniquely
factored. This will allow us (in the next Chapter) to carry out local
normalization — that is, put local coordinates on the irreducible com-
ponents of Np ∩ C. Finally, we will patch these parametrizations
together with those of open subsets of C\sing(C) to obtain C̃.

There are algebraic approaches to “localization” of C at p. For
convenience, replace C for the moment by its affinization in C2. From
§9.3, we have the coordinate ring R = C[C], and to any point p ∈ C
corresponds a maximal ideal in m ⊂ R (consisting of polynomials
vanishing at p). Inverting all primes not contained in m, or “local-
izing R at m”, replaces polynomial functions by rational functions
with poles anywhere but p, which roughly corresponds to replacing
C by C minus any set of points not including p. This is quite different
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from intersecting C with an analytic ball at p, and will not produce
a local factorization of a globally irreducible C. Instead of rational
functions, we need convergent power series. The closest construc-
tion in algebra is something called completion (or Henselian localiza-
tion). If you are curious (we won’t get into this), a good reference is
the book by D. Eisenbud.

10.1. Analytic localization

It will suffice to think of C as an affine curve { f (x, y) = 0} ⊂ C2

passing through p = (0, 0). The defining polynomial f ∈ C[x, y]
is, trivially, a convergent power series; so we may consider how f
factors in O2 = C{x, y} (cf. §7.1). In fact, for purposes of examining
the intersection of C with a small neighborhood of the origin, we will
show that f may be replaced by an element of C{x}[y] (⊂ O2) in a
particularly nice form:

10.1.1. DEF INITION. The subset1 W ⊂ C{x}[y] of Weierstrass poly-
nomials comprises elements of the form

yd + a1(x)yd−1 + · · ·+ ad−1(x)y + ad(x) (d ∈ Z≥0)

where each aj(x) ∈ C{x} satisfies

aj(0) = 0.

10.1.2. LEMMA. Let f ∈ O2 with2 f ∕≡ 0 on the y-axis. Then ∃
0, ρ > 0 such that:

(a) f ∕= 0 on (i) {|x| < ρ, |y| = 0} and (ii) {x = 0, 0 < |y| < 0};
(b) the number of roots (counted with multiplicity) of f (x, y) in y

with |y| < 0, is constant in x for |x| < ρ.
1technically, a submonoid – you can multiply (but not add) elements, and it has
the identity element 1; the notions of “irreducible element” and “uniqueness of
factorization” still have meaning. Since W is inside a UFD (see proof of Thm.
10.2.2) and has 1 as its sole unit, it does indeed have unique factorization in a very
strong sense. (See the discussion after the proof of Thm. 10.2.2.)
2In general, if S is some subset of the domain of definition of a function f , one
should read “ f ∕≡ 0 on S” as “ f is not identically zero on S”, and “ f ∕= 0 on S”
as “ f does not vanish on S” (i.e. f is zero at no point of S) — two very different
meanings. Henceforth the symbols will be used with no further explanation.
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PROOF. The zeroes of f (0, y) are isolated: otherwise they would
have a limit point, forcing f to be identically zero. We may therefore
choose 0 so that f (0, y) ∕= 0 for 0 < |y| ≤ 0. To get (a)(i) from this,
just use continuity and choose ρ sufficiently small. The number of
roots in (b) is computed by

1
2π

√
−1

˛

|y|=0

fy(x, y)
f (x, y)

dy ∈ Z,

which is continuous in x and therefore constant. □

10.1.3. LEMMA. For f as in Lemma 10.1.2, let {yν(x)}ν=1,...,d be the
roots described in (b).3 Denote the elementary symmetric polynomials in
them by ej(x) (= ∑ν1<···<νj

yν1(x) · · · · · yνj(x)). Then

w := yd − e1(x)yd−1 + · · ·+ (−1)ded(x)

is a Weierstrass polynomial.

PROOF. Note that for each ν, yν(0) = 0 from Lemma 10.1.2(a)(i).
Clearly then the ej(x) are well-defined and satisfy ej(0) = 0; we must
show that they are holomorphic on {|x| < ρ}. First we have

1
2π

√
−1

˛

|y|=0
yk fy(x, y)

f (x, y)
dy = ∑

ν

(yν(x))k =: σk(x),

since the residue at each yν(x) of the argument is

(yν(x))k · Resyν(x)(
fy

f
) = (yν(x))k · ordyν(x)( f (x, ·)).

Here the Newton symmetric polynomials σk(x) generate the same alge-
bra over C as the ej(x); that is, they can be expressed as polynomials
in each other.4 From the integral expression, the σk are evidently
holomorphic, and therefore so are the ej. □

3These may well be multivalued on {|x| < ρ} — in particular, one should expect
them to be permuted as x goes about 0. So the yν(x) are really only well-defined
on some simply-connected subset of the disk {|x| < ρ} (e.g., deleting the positive
real numbers gives a slit disk).
4See the exercises; in abstract algebra one shows that they both generate the ring
of symmetric polynomials in the {yν}.
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Let U := O∗
2 ⊂ O2 denote the units, which are just the invertible

convergent power series, or equivalently the convergent power se-
ries with nonzero constant term. (That is, given g ∈ O2, g ∈ U ⇐⇒
1
g ∈ O2.)

10.1.4. LEMMA. For f and w as above, there exists a unique u ∈ U

such that uw = f , and this holds on all of V := {|x| < ρ and |y| ≤ 0}.

PROOF. Write ũ := f
w ∈ O(V\{w = 0}). For fixed x, w(x, y) =

∏d
ν=1(y − yν(x)), as mutliplying this out gives the ej(x) as coeffi-

cients. Consequently, for each fixed x (with |x| < ρ), w(x, y) and
f (x, y) have the same roots (in y). Therefore ũ ∕= 0 on V, and ũ(x, y)
is (for each x) holomorphic in y. Now, for any given y0 with |y0| < 0,

ũ(x, y0) =
1

2π
√
−1

˛

|y|=0

ũ(x, y)
y − y0

dy .

Since ũ(x, y) is holomorphic on a neighborhood of |y| = 0, this for-
mula shows ũ(x, y0) is holomorphic in x. By Osgood’s lemma, we
have ũ ∈ O(V). Since ũ ∕= 0, it has nonzero constant term ũ(0, 0),
and is thus a unit. Uniqueness is clear since ũw = f and uw = f
=⇒ (ũ − u)w = 0 =⇒ u − ũ = 0. □

10.2. Uniqueness of local factorization

The uniqueness of u in the last Lemma was trivial. A slightly less
trivial uniqueness question would be: can we write f as a product
of a unit and a Weierstrass polynomial in two different ways – i.e.,
with a different w and u? We cannot:

10.2.1. LEMMA. Given f ∈ O2 (with f ∕≡ 0 on the y-axis), the de-
composition f = wu in Lemma 10.1.4 (i.e., into w ∈ W and u ∈ U) is
unique.

PROOF. Since any unit u has u(0, 0) ∕= 0, shrinking 0, ρ (hence V)
if necessary, we have u ∕= 0 on V. Thus if f = wu, the zeroes of f and
w are the same. This forces w = ∏(y − yν(x)) = yd − e1(x)yd−1 +

· · ·+ (−1)ded(x), which makes w (hence u) unique. □
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Making use of the last two lemmas, we now show that f ∈ O2

factors uniquely (up to units) into irreducibles fi ∈ O2. If f began
its life as a polynomial defining an irreducible algebraic curve C =

{ f = 0} ⊂ C2, then the local piece C ∩ V breaks (uniquely) into
irreducible components { fi = 0}. Provided there is more than one
of them, the fi are no longer polynomials, for that would contradict
(global) irreducibility of C.

10.2.2. THEOREM. O2 is a UFD.

PROOF. We need to demonstrate that f ∈ O2 factors into irre-
ducibles f1 · · · fℓ uniquely up to order and units.

First, note that O1 = C{x} is a UFD: given g ∈ O1, we have a
unique decomposition g(x) = xν0( f )h(x), where h is a unit (conver-
gent power series with h(0) ∕= 0) and ν0( f ) ∈ Z. The irreducibles in
this case are just the factors of x.

By the Gauss lemma, it follows that C{x}[y] is a UFD.
Next, suppose that f (x, y) = ∑a,b αabxayb ∈ O2 vanishes identi-

cally on the y-axis; that is, 0 ≡ f (0, y) = ∑b α0byb. It follows that all
α0b = 0 for all b, so that f = xν f0 where ν > 0 and f0(0, y) ∕≡ 0. We
must prove unique factorization for f0.

Let f ∈ O2 with f (0, y) ∕≡ 0. Lemmas 10.1.4 and 10.2.1 give
f = uw uniquely. Since w belongs to the UFD C{x}[y], we have a
unique decomposition w = h1 · · · · · hℓ into irreducibles hj ∈ C{x}[y].
Clearly also hj(0, y) ∕≡ 0, and so Lemma 10.1.4 applied to each hj

gives uniquely hj = ujwj, with each wj a Weierstrass polynomial
irreducible in C{x}[y] (since hj is). This yields w = (u1w1) · · · · ·
(uℓwℓ) = (u1 · · · uℓ)w1 · · ·wℓ =: ũw̃, and by Lemma 10.2.1 ũ must be
1. So far we have f = uw1 · · ·wℓ.

We do not know yet whether wj is irreducible in O2. If wj =

v′v′′ (v′, v′′ ∈ O2), then wj(0, y) ∕≡ 0 =⇒ the same thing for v′, v′′.
Lemma 10.1.4 applies to yield v′ = u′w′ and v′′ = u′′w′′, so that wj =

(u′u′′)(w′w′′); applying Lemma 10.2.1 yet again gives u′u′′ = 1 =⇒
wj = w′w′′. But w′, w′′ ∈ W ⊂ C{x}[y], contradicting irreducibility
of wj in C{x}[y].
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To see uniqueness, write factorizations f = f1 · · · fℓ = g1 · · · gk

into irreducibles in O2; we may assume f (0, y) ∕≡ 0. Then Lemma
10.1.4 gives f j = ujwj and gi = ũiw̃i with wj, w̃i irreducible Weier-
strass polynomials. We then have

(u1 · · · uℓ)(w1 · · ·wℓ) = (ũ1 · · · ũk)(w̃1 · · · w̃k),

so that by Lemma 10.2.1 u1 · · · uℓ = ũ1 · · · ũk and w1 · · ·wℓ = w̃1 · · · w̃k.
By uniqueness of factorization in C{x}[y] (and Lemma 10.2.1), the
{wj} and {w̃i} are the same (up to reordering), and ℓ = k. □

Note the key statement that comes out of this proof: given f ∈ O2

with f (0, y) ∕≡ 0, we have

(10.2.3) f = uw1 · · ·wℓ,

where u ∈ U and wi are Weierstrass polynomials which are irre-
ducible (as Weierstrass polynomials, as elements of C{x}[y], and as
elements of O2). Moreover, this decomposition is completely unique,
up to reordering of the wi. Finally – this also comes out of the proof
– if f was a Weierstrass polynomial, then u = 1 in (10.2.3), and
degy( f ) = ∑ℓ

i=1 degy(wi). This will be useful in working the fol-
lowing problems.

Exercises
(1) Show f (x, y) = x3 − x2 + y2 is (a) irreducible in C[x, y] and (b)

reducible in C{x}[y].
(2) Show g(x, y) = x3 − y2 is irreducible in C{x}[y].
(3) What form does the factorization in C{x}[y] of the Weierstrass

polynomial f = y4 + xy + x4 take? (You don’t have to compute
the power series!) How does this correspond to the Newton poly-
gon connecting the (a, b) which appear as exponents (viz., xayb)
in monomial terms of f ?5

5More precisely, the Newton polygon is the boundary of the convex hull of the
sets (a, b) + R2

≥0.
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(4) By considering a few more examples, e.g. y4 + xy2 + x5, x5 + y5,
and y8 + xy4 + x2y2 + x4y + x8, can you formulate a conjecture
connecting the Newton polygon to the factorization into irre-
ducibles in C{x}[y]?

(5) The proof of Lemma 10.1.3 used the fact that the elementary sym-
metric polynomials ek in {yi}m

i=1 can be expressed as polynomials
in the Newton symmetric polynomials σk = ∑m

i=1 yk
i . Prove this

by establishing that −kek = ∑k
i=1(−1)iek−i pi. [Hint: substitute

x = yj in ∏m
ℓ=1(x − yℓ) = ∑m

i=0(−1)k−iek−ixi, then sum over j.]
(6) Adapt the proof of Proposition 8.2.7 to show that any (closed)

complex analytic curve C ⊂ P2 (i.e., a subset which in a neighbor-
hood of any point is cut out by the vanishing of a nonconstant
holomorphic function) is in fact algebraic (cut out by a homoge-
neous polynomial). [Suggestion: by applying a projectivity, you
may assume that [0:1:0] is not in C. Note that the intersection of C
with any vertical line x = x0 is finite; in a neighborhood of each
intersection point (x0, y0), C can be described by a Weierstrass
polynomial in y − y0. Multiply these together to get an element
of C{x − x0}[y], monic in y, cutting out C for |x − x0| < ρ (and all
y). Argue that these local elements patch together to give an el-
ement “∏m

λ=1(y − yλ(x))” in O(C)[y], and then show that O(C)

can be replaced by C[x].]


