
CHAPTER 11

Proof of the normalization theorem

The purpose of this chapter is twofold: to find a method for
explicitly parametrizing neighborhoods of singular points on alge-
braic curves; and, using this, to completely prove part (A) of Theo-
rem 3.2.1. In fact, we shall prove a stronger result which contains a
uniqueness statement:

11.0.1. THEOREM. Let C ⊂ P2 be an irreducible algebraic curve, with
S = sing(C) its set of singular points. Then there exists a Riemann surface
C̃ and morphism (of complex manifolds) σ : C̃ → P2 such that

(a) σ(C̃) = C
(b) #{σ−1(S)} < ∞
(c) σ : (C̃\σ−1(S)) → (C\S) =: C∗

is injective (hence an isomorphism).

The pair (C̃, σ) is called the normalization of C, and is unique in the
sense that if (C̃′, σ′) is another, then there exists a morphism τ : C̃

∼=−→ C̃′

such that σ = σ′ ◦ τ.

We remark that in the correspondence (cf. §9.3) between ideals
I ⊂ C[x, y], varieties V = V(I), and rings C[V] = C[x,y]

I , “normal-
ization” means taking the integral closure of C[V] in C(V). Taking
“Spec” of the result produces an affine variety Ṽ with a morphism
to V. This procedure may be carried out for projective varieties by
patching affine ones together, and if this is done for curves (V = C),
then Ṽ is really just C̃ constructed algebraically. While this is beyond
the scope of our course, it’s instructive to look at an example.
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136 11. PROOF OF THE NORMALIZATION THEOREM

11.0.2. EXAMPLE. If we take V = {x3 − x2 + y2 = 0} ⊂ C2, then
the coordinate ring

C[V] =
C[x, y]

(x3 − x2 + y2)

is not integrally closed in its fraction field C(V). That is, the equation
ξ2 + (x − 1) = 0, while irreducible in C[V][ξ], is “solved” by ξ = y

x ,

as y2

x2 ≡ x2−x3

x2 = 1− x in C(V). A schematic picture of the irreducible
cubic curve V is

(1,0)(0,0)

and y
x can be viewed as “separating the branches” of V at the singu-

lar point (0, 0). The sense in which adjoining y
x to C[V] produces its

integral closure and normalizes V is considered in Exercise (3).
There is a closely related concept known as blowing up (already

briefly mentioned in Example 7.3.4), which (algebro-)geometrizes
the adjunction of elements of the fraction field. In this case, we need
to blow up C2 at the origin, which replaces (0, 0) by a P1 with coor-
dinate “ y

x ” (parametrizing slopes of lines through the origin). More
precisely, we take two copies of C2 — namely, U0 with coordinates
(x, u), and U1 with coordinates (v, y) — and glue them by the map

sending {u ∕= 0} ⊂ U0 to {v ∕= 0} ⊂ U1 via (x, u)
φ+→ (u−1, xu). The

resulting complex manifold QC2 = U0 ∪
φ

U1 maps onto C2 by send-

ing (x, u) +→ (x, xu) and (v, y) +→ (vy, y). Exercises (4)-(6) explore
the use of blowups to normalize singular curves, starting with the
above curve V.
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Returning to our main subject, in Exercise (1) of Chapter 10 you
were asked to carry out the (local) analytic approach for the last ex-
ample, proving that x3 − x2 + y2 is irreducible in C[x, y] but reducible
in C{x}[y]. Here is another such example.

11.0.3. EXAMPLE. Consider the equation y4 + x3 − x2(= 0), which
is irreducible in C[x, y] but reducible in C{x}[y], into the product of
Weierstrass polynomials

(y2 − x
√

1 − x)(y2 + x
√

1 − x).

Here x
√

1 − x is regarded as a convergent power series (in C{x})
vanishing at x = 0. The local picture (near (0, 0)) described by this
factorization is of two “parking lots” (topologically, these are just
disks) attached at their centers:

g
2

g
1

We need a general procedure that produces the indicated holomor-
phic parametrizations of these two branches.

11.1. Overview

Informally, here is the main idea of the proof of Theorem 11.0.1.
Given an irreducible algebraic curve C with singular point p, we may
use a PGL(3, C)-transformation (i.e. a projectivity) of P2 to move
p +→ [1 : 0 : 0]. By another linear transformation of coordinates
(cf. §8.2), we can put the affine equation in the form

(11.1.1) f = yn + a1(x)yn−1 + · · ·+ an(x) (= 0) , aj(x) ∈ C[x].

Now we want to normalize a neighborhood of the singularity
(0, 0). Since f is irreducible in C[x][y], its discriminant D( f )(x) is
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not identically zero in C[x]. Hence the “local factorization” f =

f m1
1 · · · f mℓ

ℓ into irreducibles in C{x}[y] will have no repeated fac-
tors (all mi = 1). Writing ∆ = {|x| < ρ} and W∆ = ∆ × {|y| < 0}
for sufficiently small ρ, 0 > 0, this corresponds to the decomposition
of C ∩ W∆ into C∆

1 ∪ · · · ∪ C∆
ℓ , where each C∆

i is homeomorphic to a
disk and the union attaches them only at their centers.)

More precisely, writing

f = uw1 · · ·wℓ

as in §, the C∆
i are the zero-loci {wi = 0} of irreducible Weierstrass

polynomials. If we can write down 1-to-1 holomorphic maps ϕ̃i :
∆̃ → C2 (∆̃ is some other disk related to ∆) with image ϕ̃i(∆̃) = C∆

i ,
and repeat this procedure over all singular points, then the normal-
ization C̃ can be constructed as follows. On C∗ = C\sing(C), we
have a covering by holomorphic parametrizations ϕα = z−1

α (from
§7.2). Composing ϕ̃i with zα whenever C∆

i ∩ Uα is nonempty yields
holomorphic transition functions. Thinking of C∗ as an abstract com-
plex 1-manifold, these transition functions indicate how to attach
each C∆

i to C∗ to yield a new complex 1-manifold C̃. To obtain C
(topologically) from this, we just reattach the centers of the C∆

i .
The first step indicated in this outline, which we do not yet know

how to do, was the construction of the {ϕ̃i}. We shall now do this.

11.2. Irreducible local normalization

Let w = yk + b1(x)yk−1 + · · ·+ bk(x) be a Weierstrass polynomial,
irreducible in C{x}[y]. Unless k = 1, the discriminant (D(w))(x)
has a zero at x = 0. Since D(w) is not identically zero, this zero is
isolated, and we can take ρ small enough that x = 0 is its only zero
on ∆ = {|x| < ρ}.

Now, there is a factorization w = ∏k
ν=1(y − yν(x)) which is valid

in the sense of §8.2, but not in C{x}[y]. Namely, the {yν(x)} are
“multivalued” on ∆,1 but become well-defined on ∆ minus a slit.

1except at 0, since all yν(0) = 0



11.2. IRREDUCIBLE LOCAL NORMALIZATION 139

(Another, more algebraic, way to think of this factorization, if 0 <

|x0| < ρ, is as taking place in C{x − x0}[y].) The multivaluedness is
manifested as follows: by the heredity principle, going once coun-
terclockwise around the origin in ∆∗, permutes the roots of w by
yν(x) +→ yτ(ν)(x) where τ ∈ Sk(=the symmetric group on k ele-
ments). This permutation must be transitive, i.e. a k-cycle: other-
wise, it splits into a product of (smaller) cycles, each of which gives
rise to an irreducible proper factor of w in C{x}[y], in contradiction
to its irreducibility.

Here, then, is how to parametrize the set {w = 0} ⊂ W∆:

11.2.1. PROPOSITION. Let w ∈ W be irreducible of degree k, and pick
any ν ∈ {1, . . . , k}. Then writing ∆̃ := {t ∈ C| |t| < ρ

1
k },

g : ∆̃ → C2

t +→ (tk, ỹν(tk))

is well-defined and injective,2 with image the local analytic curve

C∆ := {(x, y) |w(x, y) = 0, |x| < ρ, |y| < 0},

and gives a biholomorphism (of complex 1-manifolds)

∆̃\{0}
∼=→ C∆\{(0, 0)}.

11.2.2. REMARK. Here C∆\{(0, 0)} is a complex 1-manifold by
the holomorphic implicit function theorem as in §7.2, and is cov-
ered by neighborhoods with local holomorphic coordinate x. One
can regard the last biholomorphism as giving the transition function
between (∆̃, t) and (more generally) any open set in C∗ with holo-
morphic coordinate x.

PROOF OF PROP. 11.2.1. Recall that yν(x) is well-defined on the
slit disk ∆− := ∆\{x ∈ R≥0}. Analytic continuation of yν(x) once
counterclockwise around x = 0 yields yτ(ν)(x); going around once
more gives yτ2(ν)(x), and so on. Since τ is a k-cycle, τk(ν) = ν and
going around zero k times returns us to yν(x). But tk does precisely this
2The meaning of “ỹν(tk)” will be defined in proof.
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when t goes around 0 once, and so yν(tk) extends to a well-defined
analytic function on ∆̃.

A bit more carefully, we subdivide ∆̃∗ = ∪k−1
j=0 ∆̃(j) into pie-slices

∆̃(j) := {0 < |t| < ρ
1
k and j

2π ≤ arg(t) ≤ j+1
2π }. On the interior

of each slice (that is, where j
2π < arg(t) < j+1

2π ), we can define a
holomorphic function by yτ j(ν)(t

k), since t +→ tk maps this interior
(isomorphically) to ∆− where yτ j(ν)(x) is defined. Extending these

functions continuously to ∆̃(j), they patch together (in fact, analyti-
cally continue into one another) to yield a single holomorphic func-
tion ỹν(tk) on ∆̃∗. This is bounded exactly as in §8.2, and so extends
to O(∆̃) by the removable singularity theorem.

Let ζk := e
2π

√
−1

k . If (tk
1, ỹν(tk)) = (tk

2, ỹν(tk
2)) then

t2 = (ζk)
ℓt1

for some ℓ ∈ Z, and
yτℓ(ν)(t

k
1) = yν(tk

1).

Since the {yν} are all distinct away from 0, the last equation is im-
possible unless k|ℓ, which implies (ζk)

ℓ = 1 so that t1 = t2. This
proves that g is injective.

Since τ is transitive, g maps surjectively onto C∆. It gives, finally,
a holomorphic map of Riemann surfaces on the complement of 0
since in local coordinates t (on ∆̃∗) and x (for open subsets covering
C∆\{(0, 0)}) we have x =“g(t)’s x-coordinate”= tk. □
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11.3. Finishing local normalization

Referring back to §11.1, for each of the irreducible factors wj of f
we now apply Proposition 11.2.1. This yields normalizations

gj : ∆̃j → C∆
j

of the irreducible components of the local analytic curve C ∩ W∆:

x

y

x
|x|<ρ

∆ ∆

∆

1
2

3

C

C
C

∆

∆

∆

1

2

3

g g

g

1 2

3

C

Each restriction

g◦j : ∆̃∗
j

∼=−→ (C∆
j \{(0, 0)}) ↩→ C∗

is biholomorphic with respect to local coordinates on ∆̃j and an open
covering of C∆

j \{(0, 0)}. In fact, it takes the form t +→ tk(= x) as
indicated at the end of the last proof. These may be regarded as the
“gluing” maps that will attach each ∆̃j to C∗ thereby plugging the
holes in C∗, which is what we do next.

Before that, we just note that one should carry out the construc-
tion of gj’s as we have done near p = (0, 0), at all the other singular
points of C.
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11.4. Global normalization (patching)

Suppose for the moment (0, 0) is the only singular point of C, so
that C∗ = C\{(0, 0)}. Then we put

C̃ := C∗ ∪
g◦1

∆̃1 ∪
g◦2

∆̃2 ∪ · · · ∪
g◦ℓ

∆ℓ ,

where C∗ ∪
g◦1

∆̃1 means

C∗ ∐ ∆̃1

g◦1(p) ∼ p (∀p ∈ ∆̃∗
1)

,

C∗ ∪
g◦1

∆̃1 ∪
g◦2

∆̃2 means

C∗ ∐ ∆̃1 ∐ ∆̃2

g◦1(p) ∼ p , g◦2(q) ∼ q (∀p ∈ ∆̃∗
1 , q ∈ ∆̃∗

2)
,

and so forth.
If there are more singularities, then repeat this patching at each

point in S = sing(C).
To get a map σ : C̃ → P2 with image C, set

σ(c) :=

1
3

4
c , for c ∈ C∗

gj(c), for c ∈ ∆̃j
.

These two prescriptions are compatible with the patching.
To see that C̃ is compact: given an open cover {Uα} of C̃, pick

one Uα(q) containing each q ∈ σ−1(S). The complement C̃′ of these
in C̃ is isomorphic to a closed subset of C, since σ is bijective away
from σ−1(S). Now a closed subset of C is a closed subset in P2, P2

is compact, and a closed subset of a compact set is compact. So C̃′

is compact and {Uα ∩ C̃′} has a finite subcover {Ui ∩ C̃′}. The {Ui}
together with the {Uα(q)} then furnish a finite subcover of C̃.

We have now proved all but the uniqueness part of Theorem
11.0.1 and it is time to backtrack and get explicit.
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11.5. Examples of local normalization

11.5.1. EXAMPLE. Assuming gcd(k, a) = 1,

yk − xa

is irreducible in C{x}[y], and we shall apply the procedure of Propo-
sition 11.2.1. The k (multivalued) roots of yk − xa = 0 in y are

y1(x) = k
√

xa , y2(x) = ζk
k
√

xa , . . . , yk(x) = (ζk)
k−1 k

√
xa;

they are well defined on the slit disk {0 < |x| < ρ, arg(x) ∈ (0, 2π)}.
If we plug tk into y1(x) and analytically continue, we get

ỹ1(tk) = ta.

Hence by definition
g(t) = (tk, ta).

We should check that the image of g lies in yk − xa = 0: this is just
the statement that (tk)a = (ta)k.

11.5.2. EXAMPLE. Here is a more complicated example where
there is more than one gj (as in §11.3):

f = y8 + y4 − x6 + x3 − x2y4 + x5 − x2.

Viewed in C{x}[y], this is not a Weierstrass polynomial (the coeffi-
cient 1− x2 of y4 is not zero at x = 0), so we should expect a nontriv-
ial unit u in (10.2.3). Indeed,

f = (y4 − x3 + 1)(y4 + x3 − x2)

= (y4 − x3 + 1)
+ ,- .

u

(y2 − x
√

1 − x)
+ ,- .

w1

(y2 + x
√

1 − x)
+ ,- .

w2

,

where u is a unit because u(0, 0) ∕= 0.
Now w1, w2 are irreducible Weierstrass polynomials and so we

apply Prop. 11.2.1 (with k = 2) to normalize their zero-sets.
Beginning with w1, the roots are y11(x) =

:
x
√

1 − x and y12(x) =
−
:

x
√

1 − x, which are swapped as x goes around 0. So ỹ11(t2) is
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obtained by substituting t2 for x and analytically continuing: infor-
mally,

:
t2
√

1 − t2 = t 4
√

1 − t2. This gives

g1(t) = (t2, t 4
:

1 − t2).

For w2, the roots are given by y21(x) = i
:

x
√

1 − x and y22(x) =
−i

:
x
√

1 − x; and this yields

g2(t) = (t2, it 4
:

1 − t2).

Let’s check this parametrizes w2 = 0: one need only write (y(t))2 +

x(t)
:

1 − x(t) = (it 4
√

1 − t2)2 + t2
√

1 − t2 = 0.

11.6. Uniqueness

Begin with two normalizations:

C̃ σ !! P2 C̃′σ′
""

C̃ \ σ−1(S)
∼= !!

##◗ ❙ ❯ ❳ ❩ ❪ ❴ ❛ ❞ ❢ ✐ ❦ -

!"

$$

C \ S
!"

$$

C̃′ \ (σ′)−1(S)
∼=""

!"

$$

with σ, σ′ holomorphic maps of complex manifolds satisfying (a)-(c)
in Theorem 11.0.1. Essentially what we have to show is that neigh-
borhoods of the points of σ−1(S) (in C̃) and (σ′)−1(S) (in C̃′) are iso-
morphic in a way which is compatible with σ and σ′. Put together
with the bottom dotted arrow3 these isomorphisms will yield the de-
sired map τ : C̃ → C̃′ of Riemann surfaces making the diagram

C̃ τ !!

σ

%%❃
❃❃

❃❃
❃❃

❃ C̃′

σ′

&&⑧⑧
⑧⑧
⑧⑧
⑧⑧

C

commute.
To start, let p ∈ S ⊂ C be a singular point and U ⊂ P2 be a small

open set containing it. For simplicity assume p = [1 : 0 : 0] and

3i.e., the obvious composition of isomorphisms in the bottom row.
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choose coordinates so that U ⊂ {|x| < ρ, |y| < 0} and C ∩U is given
by the zero set of a Weierstrass polynomial. Write U∗ := U\{p}.

Now pick q ∈ σ−1(p); by continuity of σ, σ−1(U) is open in C̃.
So there exists an open set V, which we may assume to be con-
nected, with q ∈ V ⊂ σ−1(U) (and σ−1(S) ∩ V = {q}). Since
σ(V\{q}) ⊂ C ∩ U∗ must then be connected, and C ∩ U∗ is homeo-
morphic to a disjoint union of punctured disks, σ maps V\{q} into
one of these punctured disks. Consequently, V is mapped into only
one (local) irreducible component4 W of C ∩ U. This yields the fol-
lowing diagram:

V

T

''
❥

✐ ❣ ❡ ❞ ❜ ❛ ❴ ❪ ❭ ❩ ❨

σ̃ !!

σ
((

X

))6
666666666 W

π

((

#
{|t| < ρ

1
k } ⊂ Ct

$∼=
g

""

t 1→tk
**---

---
---

---
---

#
U ⊂ C2

(x,y)

$ prx
!! ({|x| < ρ} ⊂ Cx)

in which prx and σ are morphisms of complex manifolds, so that
their composition X is evidently a holomorphic (obviously bounded)
function on V.

The composition T is also evidently a bounded, well-defined func-
tion on V. By the holomorphic IFT (and holomorphicity of X), it is
holomorphic on V\{q}; hence by the removable singularity theo-
rem, T ∈ O(V). It is also clear that T(0) = 0. So by the open map-
ping theorem, T maps V onto a neighborhood N of 0 in Ct (which
we may assume is a disk). Shrinking U (and thus W) if necessary,
we may conclude that σ̃ — the restriction of σ to a neighborhood of q
— maps V onto W in 1-to-1 fashion. From the diagram, this σ̃ is just
g ◦ T.

Since σ is 1-to-1 off σ−1(S), no neighborhood of any other point
q0 ∈ σ−1(S) can be sent to W. Repeating the argument above by

4Remember that these components are homeomorphic to disks; take out p and
that is where the punctured disks came from.
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varying q, sets up a 1-to-1 correspondence between “V’s” (i.e. neigh-
borhoods of points in σ−1(S) in C̃) and “W’s” (irreducible local com-
ponents of C at points of S). We can play the same game for the nor-
malization C̃′, and find that for a unique q′ ∈ (σ′)−1(S) we have a
neighborhood V′ and an isomorphism T′ : V′ → N whose composi-
tion with g gives σ̃′ : V′ → W.

The piece of τ carrying (V, q) to (V′, q′) is now defined simply by
(T′)−1 ◦ T. This is automatically holomorphic, and its composition
with σ′ is g ◦ T = σ as desired.

Exercises
(1) Locally normalize the zero-set of f (x, y) = y4 − (x+ 1)7 at (−1, 0).
(2) Locally normalize the zero-set of g(x, y) = y4 − x6 + x7 at (0, 0).
(3) Example 11.0.2 described the “algebraic normalization” of V by

replacing R = C[V] = C[x,y]
(x3−x2+y2)

by R̂, its integral closure in its
fraction field C(V). (This comprises all elements of C(V) solving
monic equations with coefficients in R.). The element y

x ∈ C(V)

satisfies ( y
x )

2 + x − 1 = 0 and ( y
x )

3 − y
x + y = 0. (a) Show that

S := R[ξ]
(ξ2+x−1,ξ3−ξ+y) (the result of adjoining y

x to R) is isomorphic

to C[ξ], the coordinate ring of P1. (b) Show that C[ξ] is integrally
closed (in C(ξ)). Conclude that R̂ = S ∼= C[ξ] and interpret this
geometrically.

(4) This problem considers the effect of blowing up at the origin on
the curve of Example 11.0.2. (a) Check that the preimage of V =

{x3 − x2 + y2 = 0} in QC2 is singular. (b) Show that if you throw
out the extraneous copy of P1 (i.e. {x = 0} in U0, {y = 0} in U1),
the resulting proper transform of V is smooth.

(5) (a) Check that the proper transform of { f = 0} from Exercise (1)
under blow-up at (−1, 0) is not smooth. (b) Show that blowing
up one more time (where?) yields a smooth curve. (c) Explain

why this corresponds to adjoining y
x+1 and (x+1)2

y to the coordi-
nate ring of the original curve.
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(6) Normalize the curve {g = 0} of Exercise (2) by blowing up three
times. What elements does this correspond to adjoining to the co-
ordinate ring? Try to sketch what happens (under proper trans-
form) to the curve at each stage.


