CHAPTER 12

Intersections of curves

Now we come to the applications of normalization, which will occupy this chapter and Chapters 14-15. You may recall that in Chapter 2 we studied intersections of an plane algebraic curve C with a (projective) line L. The points of $L \cap C$ were each assigned a multiplicity by restricting the equation of C under a parametrization of L, and looking at the multplicities of the roots of the resulting onevariable polynomial. With this definition, the multiplicities added up to the degree of the curve (cf. Prop. 2.1.15).

If we had tried to replace L by an arbitrary curve E at that point, we would have run into the problem of no longer knowing how to locally parametrize E near the intersection points. Now that we can do this (Prop. 11.2.1), we can pull the defining equation of C back under the parametrization and look at its order of vanishing at the intersection point. This leads to the general definition of intersection multiplicity, and with this in hand that we can finally state (and prove!) Bézout's theorem in general. In its proof the intersection divisor will make an appearance, so we begin with a short bit on divisors.

12.1. Divisors on a Riemann surface

Let M be a Riemann surface. The group of divisors on M is the free abelian group on points of M,

$$
\operatorname{Div}(M):=\left\{\sum_{\text {finite }} m_{i}\left[p_{i}\right] \mid m_{i} \in \mathbb{Z}, p_{i} \in M\right\} .
$$

The uncountably many symbols $\left[p_{i}\right]$ are the generators of this (very big) abelian group. Associated to a divisor $D=\sum m_{i}\left[p_{i}\right] \in \operatorname{Div}(M)$
is a degree

$$
\operatorname{deg}(D):=\sum m_{i} .
$$

The resulting group homomorphism

$$
\begin{equation*}
\operatorname{Div}(M) \xrightarrow{\text { deg }} \mathbb{Z} . \tag{12.1.1}
\end{equation*}
$$

is called the degree map.
The divisor of a (nontrivial) meromorphic function f is given by

$$
(f):=\sum_{p \in M} v_{p}(f) \cdot[p] \in \operatorname{Div}(M)
$$

where $v_{p}(f)$ is the order of f at p (Defn. 3.1.5). Note that the sum is actually finite (as required by the definition of divisor) since at all but finitely many points of $M, v_{p}(f)=0$. Now $\mathcal{K}(M)^{*}$ is a multiplicative abelian group. Sending $f \rightarrow(f)$ yields a homomorphism

$$
\begin{equation*}
\mathcal{K}(M)^{*} \xrightarrow{(\cdot)} \operatorname{Div}(M) \tag{12.1.2}
\end{equation*}
$$

of abelian groups, as you will show in an exercise below, which takes multplication to addition: $(f g)=(f)+(g),\left(f^{-1}\right)=-(f)$.

With these definitions, the composition of (12.1.2) with (12.1.1) takes f to $\sum_{p \in M} v_{p}(f)$, which by Exercise 2 of Ch. 3 is zero. That is, $\operatorname{deg} \circ(\cdot)=0$. Note that one can define meromorphic functions and divisors more generally on complex 1-manifolds, but it is only in the compact case (Riemann surfaces) that the divisors of meromorphic functions are always of degree 0 .
12.1.3. EXAMPLE. On \mathbb{P}^{1}, the easiest meromorphic function is $z=$ $\frac{Z_{1}}{Z_{0}} \in \mathcal{K}\left(\mathbb{P}^{1}\right)^{*}$. Writing simply $0, \infty$ for the points $[1: 0],[0: 1]$, its divisor is $(z)=[0]-[\infty]$, obviously of degree 0 .

12.2. Intersection multiplicities

For a polynomial $f(x)$ in one variable with $f(0)=0, \operatorname{deg}(f)$ is the exponent of the highest degree term, while the order of vanishing $\operatorname{ord}_{0}(f):=v_{0}(f)$ is the exponent of the term of lowest degree. Order (unlike degree) also makes sense for power series in 1 variable.

How does all this generalize to two variables? First, a polynomial $F(x, y)$ can be written as a sum of homogeneous terms. If this is $F=F_{k}+F_{k+1}+\cdots+F_{d-1}+F_{d}$, then $\operatorname{deg}(F):=d$ (highest homogeneous degree) while $\operatorname{ord}_{(0,0)}(F):=k$ (lowest homogeneous degree). From $\S 6.4, k$ is also the order of singularity of the curve $C=\{F=0\}$ at $(0,0)$, i.e. the number of tangent lines to C counted with multiplicity. When we don't want to refer to the polynomial, we will write $\operatorname{ord}_{(0,0)} C$; remember this is 1 when C is smooth at $(0,0), 2$ when C has an ODP (normal crossing) there, and so on. Finally, ord $(0,0)$ also makes sense for 2-variable power series.

Now suppose $V=\{f(x, y)=0\}, W=\{h(x, y)=0\}$ are reduced affine algebraic curves that intersect properly - i.e. have no common irreducible components. Then $V \cup W$ has no repeated components, so is itself reduced. For $p \in V \cap W$,

$$
\left(\frac{\partial}{\partial x}(f h)\right)(p)=f_{x}(p) h(p)+h_{x}(p) f(p)=f_{x}(p) \cdot 0+h_{x}(p) \cdot 0=0
$$

and similarly $\left(\frac{\partial}{\partial y}(f h)\right)(p)=0$. Therefore $V \cap W \subset \operatorname{sing}(V \cup W)$, and Prop. 8.1.10 yields

$$
\begin{equation*}
\#\{V \cap W\} \leq \#\{\operatorname{sing}(V \cup W)\}<\infty \tag{12.2.1}
\end{equation*}
$$

12.2.2. Definition. Assume V and W are irreducible (and distinct), and let $p \in V \cap W$. Let $U \subset \mathbb{C}^{2}$ be a neighborhood of p. Writing the local decomposition of V into irreducibles (uniquely)

$$
V \cap U=V_{1}^{\Delta}+\cdots+V_{k}^{\Delta},
$$

with local normalizations (again, essentially unique)

$$
\begin{aligned}
g_{i} & : \Delta \\
t_{i} & \mapsto\left(V_{i}(t), y_{i}(t)\right),
\end{aligned}
$$

we define the (local) intersection multiplicity at p

$$
(V \cdot W)_{p}:=\sum_{i=1}^{k} \operatorname{ord}_{0}\left(h\left(g_{i}(t)\right)\right)
$$

The (global) intersection number is then defined by

$$
(V \cdot W):=\sum_{p \in V \cap W}(V \cdot W)_{p}
$$

in which the sum is finite by (12.2.1).
12.2.3. REMARK. (a) If either V or W is smooth, the intersection number is actually the degree of a divisor,

$$
V \cdot W:=\sum_{p \in V \cap W}(V \cdot W)_{p}[p] .
$$

This is because we can regard the smooth one (say, W) as a Riemann surface and then $V \cdot W \in \operatorname{Div}(W)$. Alternatively, you can think of $V \cdot W$ as a formal sum of points of \mathbb{P}^{2}, known as a zero-cycle ${ }^{1}$ on \mathbb{P}^{2}. The degree is defined in the same way as for divisors.
(b) The composition $h \circ g_{i}$ appearing in Defn. 12.2.2 will frequently be written $g_{i}^{*}(h)$ - that is, we are pulling the function h back by the local normalization g_{i}^{*}.

The local intersection multiplicities are well-defined essentially by the uniqueness of local normalizations. They also have some reasonable properties:
12.2.4. PROPOSItION. $(V \cdot W)_{p}=(W \cdot V)_{p}$.
12.2.5. PROPOSITION. $(V \cdot W)_{p} \geq \operatorname{ord}_{p}(V) \cdot \operatorname{ord}_{p}(W)$, with equality precisely when none of V 's tangents at p coincide with the tangents of W at p.

We will postpone proof of these results to $\S \S 12.4-12.5$, since the details are a bit tedious.

[^0]12.2.6. EXAMPLE. Here are two pictures of smooth curves meeting at a point p :

(II)

In each case, $\operatorname{ord}_{p} V \cdot \operatorname{ord}_{p} W=1$ because the curves are smooth. But in the first case, $(V \cdot W)=2$, while in the second (which has distinct tangents) $(V \cdot W)=1$.
12.2.7. EXAMPLE. Let $a, b, m, n \in \mathbb{N}$ with

$$
\operatorname{gcd}(n, a)=\operatorname{gcd}(m, b)=1
$$

Then by Prop. 12.2.5, we should have ${ }^{2}$

$$
\left(\left\{y^{n}=x^{a}\right\} \cdot\left\{y^{m}=x^{b}\right\}\right)_{(0,0)} \geq \min (n, a) \cdot \min (m, b)
$$

Let's check this by actually computing the left-hand side. The normalization of $\left\{y^{n}=x^{a}\right\}$ is just $t \stackrel{g}{\longmapsto}\left(t^{n}, t^{a}\right)$ by Example 11.5.1. Writing $h=y^{m}-x^{b}$, we have

$$
g^{*}(h)=g^{*}\left(y^{m}-x^{b}\right)=\left(t^{a}\right)^{m}-\left(t^{n}\right)^{b}=t^{a m}-t^{b n}
$$

and the order of this at $(0,0)$ is the least of $a m$ and $b n$:

$$
\left(\left\{y^{n}=x^{a}\right\} \cdot\left\{y^{m}=x^{b}\right\}\right)_{(0,0)}=\min (a m, b n) .
$$

This clearly satisfies the inequality, and it is easy to cook up an example where equality doesn't hold: with $n=3, a=4, m=2, b=9$ it becomes $8 \geq 6$.

[^1]To extend $(V \cdot W)_{p}$ to the more general setting where $V=\sum m_{j} V_{j}$ and $W=\sum n_{k} W_{k}$ with $\left\{V_{j}\right\}$ and $\left\{W_{k}\right\}$ irreducibles, we simply put

$$
(V \cdot W)_{p}:=\sum_{j, k} m_{j} n_{k}\left(V_{j} \cdot W_{k}\right)_{p}
$$

12.2.8. REMARK. Here are two other approaches to local intersection multiplicity which give the same numbers.
(a) The commutative algebra approach makes use of localization. Recall that $\mathbb{C}(x, y)$ denotes the fraction field of $\mathbb{C}[x, y]$. Let $p=(a, b) \in \mathbb{C}^{2}$. The local ring at p, denoted \mathcal{O}_{p}, is the subset of $\mathbb{C}(x, y)$ consisting of rational functions $\frac{G_{1}}{G_{2}}$ (here $G_{1}, G_{2} \in \mathbb{C}[x, y]$) with $G_{2}(p) \neq 0$. You can easily check that this is a ring, and it obviously contains $\mathbb{C}[x, y]$. It has a unique maximal ideal \mathfrak{m}_{p} consisting of functions which vanish at p.

Now let $V=\{f=0\}, W=\{h=0\}$ be as above, and assume $p \in V \cap W$. Writing $(f, h)_{p}$ for the ideal in \mathcal{O}_{p} generated by f and h, we define

$$
(V \cdot W)_{p}:=\operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{p} /(f, h)_{p}\right)
$$

by viewing the quotient $\mathcal{O}_{p} /(f, h)_{p}$ as a vector space. (Note that from this definition, invariance of $(V \cdot W)_{p}$ under projectivities is immediately clear.) As a simple example, we know that the intersection multiplicity at $p=(0,0)$ of $\{x=0\}$ and $\left\{y^{2}-x=0\right\}$ should be 2. The quotient vector space, indeed, has basis $1, y$. See Chapter 4 of [L. Flatto, Poncelet's Theorem] for more on this approach.
(b) For an approach via resultants, it is convenient to work with homogeneous polynomials. Write $\bar{V}=\{F=0\}, \bar{W}=\{H=0\}$, $P=\left[P_{0}: P_{1}: P_{2}\right] \in \bar{V} \cap \bar{W}$ (in homogeneous coordinates $[\mathrm{Z}: X: Y]$ on \mathbb{P}^{2}). Assume that $[0: 0: 1]$ neither belongs to (i) $C \cup D$, nor (ii) any line joining points of $C \cap D$, nor (iii) any line tangent to C or D at a point of $C \cap D$. Then we may define

$$
(\bar{V} \cdot \bar{W})_{P}:=\operatorname{ord}_{\left[P_{0}: P_{1}\right]}\left(\mathcal{R}_{Y}(F, H)\right) .
$$

Here we are thinking of F, H as elements of $\mathbb{C}[Z, X][Y]$; so the resultant $\mathcal{R}_{Y}(F, H)$, which eliminates Y, ${ }^{3}$ is a polynomial in Z and X. It is in fact homogeneous and of degree $\operatorname{deg}(F) \cdot \operatorname{deg}(H)$. Its order at [$\left.P_{0}: P_{1}\right]$ is just the highest power of $\left(P_{0} X-P_{1} Z\right)$ dividing it.

Justifying this definition takes a bit of work, but it leads immediately to a proof of Bezout since the intersection multiplicities have to add up to $\operatorname{deg} \mathcal{R}_{Y}(F, H)=\operatorname{deg} \bar{V} \cdot \operatorname{deg} \bar{W}$ by construction. This is the point of view taken in [F. Kirwan, Complex Algebraic Curves].

12.3. Bézout's theorem

We first do a quick recap of Prop. 2.1.15:
12.3.1. Proposition. Let $C=\{F(Z, X, Y)=0\} \subset \mathbb{P}^{2}$ be a degree d curve, $L\left(\cong \mathbb{P}^{1}\right) \subset \mathbb{P}^{2}$ a line not contained in C. Then $(L \cdot C)=d$.

Proof. By a change of coordinates, we may assume $L=\{Y=$ $0\}$ and $[0: 1: 0] \notin C$. Then by the Fundamental Theorem of Algebra,

$$
F(Z, X, 0)=\prod_{i=1}^{k}\left(X-\alpha_{i} Z\right)^{d_{i}}
$$

where $\sum_{i=1}^{k} d_{i}=d$ since F is homogeneous of degree d. Hence $C \cap$ $L=\left\{\left[1: \alpha_{i}: 0\right]\right\}_{i=1}^{k}$.

Passing to affine coordiantes $\left(f=\Pi\left(x-\alpha_{i}\right)^{d_{i}}\right.$) and locally normalizing L at $\left(\alpha_{i}, 0\right)$ by $t \stackrel{g_{i}}{\longmapsto} \alpha_{i}+t$, we have

$$
(L \cdot C)_{\left(\alpha_{i}, 0\right)}:=\operatorname{ord}_{0}\left(g_{i}^{*} f\right)=d_{i}
$$

We conclude that $(L \cdot C)=\sum d_{i}=d$.
12.3.2. THEOREM. [E. BÉZOUT, 1779] Let $C, E \subset \mathbb{P}^{2}$ be properly intersecting projective algebraic curves. Then $(C \cdot E)=\operatorname{deg} C \cdot \operatorname{deg} E$.

Proof. Assume C is irreducible. Let $k=\operatorname{deg} E$, and choose lines L_{1}, \ldots, L_{k} avoiding the points of $C \cap E$. Write $E=\{H(Z, X, Y)=0\}$,

[^2]$L_{j}=\left\{\Lambda_{j}(Z, X, Y)=0\right\}$. Then by Propositions 12.2.4 and 12.3.1,
$$
\left(C \cdot L_{j}\right)=\left(L_{j} \cdot C\right)=\operatorname{deg} C
$$
and
$$
\left(C \cdot\left(\cup_{j=1}^{k} L_{j}\right)\right)=\sum_{j=1}^{k}\left(C \cdot L_{j}\right)=\operatorname{deg} C \cdot \operatorname{deg} E
$$

Now by Example 7.3.5, the quotient of two homogeneous polynomials of the same degree gives a meromorphic function on projective space. H is of degree k and each Λ_{j} is of degree 1 , so we may define

$$
\varphi:=\frac{H}{\Lambda_{1} \cdots \cdots \Lambda_{k}} \in \mathcal{K}\left(\mathbb{P}^{2}\right) .
$$

Writing $\sigma: \tilde{C} \rightarrow \mathbb{P}^{2}$ (with $\sigma(\tilde{C})=C$) for the normalization, we have by Example 7.3.6 $\sigma^{*} \varphi \in \mathcal{K}(\tilde{C})$. We can compute the divisor of this meromorphic function if we notice that locally about each point of $C \cap E$ [resp. $\left.C \cap\left(\cup L_{j}\right)\right], \varphi$ [resp. $\frac{1}{\varphi}$] gives a defining equation for E [resp. $\cup L_{j}$]. So by Defn. 12.2.2,

$$
\begin{aligned}
\left(\sigma^{*} \varphi\right) & =\sum_{p \in C \cap E} v_{p}\left(\sigma^{*} \varphi\right)[p]+\sum_{q \in C \cap\left(\cup L_{j}\right)} v_{q}\left(\sigma^{*} \varphi\right)[q] \\
& =\sum_{p \in C \cap E} \operatorname{ord}_{p}\left(\sigma^{*} \varphi\right)[p]-\sum_{q \in C \cap\left(\cup L_{j}\right)} \operatorname{ord}_{q}\left(\sigma^{*} \frac{1}{\varphi}\right)[q] \\
& =\sum_{p \in C \cap E}(C \cdot E)_{p}[p]-\sum_{q \in C \cap\left(\cup L_{j}\right)}\left(C \cdot\left(\cup L_{j}\right)\right)_{q}[q] .
\end{aligned}
$$

But as divisors of meromorphic functions on Riemann surfaces have degree 0,

$$
\begin{aligned}
0=\operatorname{deg}\left(\left(\sigma^{*} \varphi\right)\right) & =\sum_{p \in C \cap E}(C \cdot E)_{p}-\sum_{q \in C \cap\left(\cup L_{j}\right)}\left(C \cdot\left(\cup L_{j}\right)\right)_{q} \\
& =(C \cdot E)-\operatorname{deg} C \cdot \operatorname{deg} E .
\end{aligned}
$$

Finally, if C is reducible, break it into irreducible components and sum the results!
12.3.3. RemARK. In terms of zero-cycles (cf. Remark 12.2.3(a)), Bézout is saying that $C \cdot E$ has degree $\operatorname{deg} C \cdot \operatorname{deg} E$.

12.4. Proof of Proposition 12.2.4

We now show the symmetry of intersection numbers. Write $V=$ $\{f=0\}, W=\{h=0\}, p \in V \cap W$. For simplicity assume that $p=(0,0), V$ and W are irreducible, and the defining (polynomial) equations are in the form

$$
f=y^{m}+B_{1}(x) y^{m-1}+\cdots+B_{m}(x), \quad h=y^{n}+b_{1}(x) y^{n-1}+\cdots+b_{n}(x)
$$

We decompose these according to (10.2.3): viz.,

$$
f=u_{1} \cdot v_{1} \cdots v_{r}, \quad h=u_{2} \cdot w_{1} \cdots w_{s}
$$

where the v_{j}, w_{k} are irreducible Weierstrass polynomials. For the roots of v_{j} [resp. w_{k}] on a slit disk $\left\{|x|<\rho, x \notin \mathbb{R}_{>0}\right\}$ we shall write $y_{\mu}^{(j)}(x)\left(\mu=1, \ldots, m_{j}\right)$ [resp. $\left.z_{v}^{(k)}(x)\left(v=1, \ldots, n_{k}\right)\right]$. On the non-slit x-disk these become multivalued, and we will assume that counterclockwise analytic continuation sends $y_{\mu} \mapsto y_{\mu+1}$ to keep the numbering simple. As in $\S 11.2$, the $\tilde{y}_{\mu}^{(j)}\left(t^{m_{j}}\right)$ [resp. $\tilde{z}_{v}^{(k)}\left(t^{n_{k}}\right)$] are welldefined on a small t-disk $\left\{|t|<\rho_{0}\right\}$, and we have ${ }^{4}$

$$
\tilde{y}_{\mu+\mu_{0}}^{(j)}\left(t^{m_{j}}\right)=\tilde{y}_{\mu}^{(j)}\left(\left(\zeta_{m_{j}}^{\mu_{0}} t\right)^{m_{j}}\right)
$$

for some primitive $m_{j}^{\text {th }}$ root of unity $\zeta_{m_{j}}$. (This changes the branch you start at when $\arg (t)=0$.) Parametrize $\left\{v_{j}=0\right\}$ and $\left\{w_{k}=0\right\}$ by $g_{j}(t):=\left(t^{m_{j}}, \tilde{y}_{\mu}^{(j)}\left(t^{m_{j}}\right)\right)$ resp. $G_{k}(t):=\left(t^{n_{k}}, \tilde{z}_{v}^{(k)}\left(t^{n_{k}}\right)\right)$.

We then have the key identity

$$
\begin{gather*}
\prod_{\mu_{0}=1}^{m_{j}} w_{k}\left(t^{n_{k} m_{j}}, \tilde{y}_{\mu+\mu_{0}}^{(j)}\left(t^{n_{k} m_{j}}\right)\right) \tag{12.4.1}\\
=\prod_{\mu_{0}=1}^{m_{j}} \prod_{v_{0}=1}^{n_{k}}\left\{\tilde{y}_{\mu+\mu_{0}}^{(j)}\left(t^{n_{k} m_{j}}\right)-\tilde{z}_{v+v_{0}}^{(k)}\left(t^{n_{k} m_{j}}\right)\right\} \\
= \pm \prod_{v_{0}=1}^{n_{k}} v_{j}\left(t^{n_{k} m_{j}}, \tilde{z}_{v+v_{0}}^{(k)}\left(t^{n_{k} m_{j}}\right)\right), \tag{12.4.2}
\end{gather*}
$$

 of $\tilde{y}_{\mu}^{(j)}$, since this assumes $\tilde{y}_{\mu}^{(j)}$ is well-defined on an entire disk (whereas only its composition with the $m_{j}^{\text {th }}$-power map is!).
which uses the factorization of each Weierstrass polynomial (at each fixed x) into a product of linear factors. Bearing in mind that rotation of a disk by $2 \pi / m_{j}$ does not change the order of a function at 0 , we compute

$$
\begin{gathered}
\operatorname{ord}_{0}((12.4 .1))=n_{k} \sum_{\mu_{0}=1}^{m_{j}} \operatorname{ord}_{0}\left(w_{k}\left(t^{m_{j}}, \tilde{y}_{\mu+\mu_{0}}^{(j)}\left(t^{m_{j}}\right)\right)\right) \\
=n_{k} m_{j} \operatorname{ord}_{0}\left(w_{k}\left(t^{m_{j}}, \tilde{y}_{\mu}^{(j)}\left(t^{m_{j}}\right)\right)\right) \\
=n_{k} m_{j} \operatorname{ord}_{0}\left(g_{j}^{*} w_{k}\right) .
\end{gathered}
$$

Dividing this by $m_{j} n_{k}$ and applying $\sum_{j=1}^{r} \sum_{k=1}^{S}$ gives

$$
\sum_{j} \operatorname{ord}_{0}\left(g_{j}^{*} \prod_{k} w_{k}\right)=\sum_{j} \operatorname{ord}_{0}\left(g_{j}^{*} h\right)=(V \cdot W)_{p} .
$$

Similarly

$$
\left.\operatorname{ord}_{0}((12.4 .2))=n_{k} m_{j} \operatorname{ord}_{0}\left(G_{k}^{*} v_{j}\right),\right)
$$

and dividing out $m_{j} n_{k}$ and summing yields $(W \cdot V)_{p}$. Q.E.D.

12.5. Proof of Proposition 12.2.5

With the same notation as in the last section, we also write out the irreducible Weierstrass polynomials

$$
v_{j}=y^{m_{j}}+a_{m_{j}-1}^{(j)}(x) y^{m_{j}-1}+\cdots+a_{0}^{(j)}(x)
$$

Note that $a_{0}^{(j)}(x)$ is the product of the multivalued roots $y_{\mu}^{(j)}(x)$. We have $\operatorname{ord}_{(0,0)} v_{j} \leq m_{j}, \sum_{j} \operatorname{ord}_{(0,0)} v_{j}=\operatorname{ord}_{(0,0)} f$, and

$$
\begin{gathered}
\operatorname{ord}_{(0,0)}\left(v_{j}(x, y)\right) \leq \operatorname{ord}_{0}\left(a_{0}^{(j)}(x)\right)=\frac{1}{m_{j}} \operatorname{ord}_{0}\left(a_{0}^{(j)}\left(t^{m_{j}}\right)\right) \\
=\frac{1}{m_{j}} \operatorname{ord}_{0}\left(\prod_{\mu_{0}=1}^{m_{j}} \tilde{y}_{\mu+\mu_{0}}^{(j)}\left(t^{m_{j}}\right)\right) \\
=\operatorname{ord}_{0}\left(\tilde{y}_{\mu}^{(j)}\left(t^{m_{j}}\right)\right)
\end{gathered}
$$

Therefore

$$
\begin{gathered}
(V \cdot W)_{p}=\sum_{j=1}^{r} \operatorname{ord}_{0}\left(h\left(t^{m_{j}}, \tilde{y}_{\mu}^{(j)}\left(t^{m_{j}}\right)\right)\right) \\
\geq \sum_{j=1}^{r}\left(\operatorname{ord}_{(0,0)} h\right) \cdot \min \left\{\operatorname{ord}_{0}\left(t^{m_{j}}\right), \operatorname{ord}_{0}\left(\tilde{y}_{\mu}^{(j)}\left(t^{m_{j}}\right)\right)\right\} \\
\geq\left(\operatorname{ord}_{(0,0)} h\right) \cdot \sum_{j=1}^{r} \min \left\{\operatorname{ord}_{0}\left(t^{m_{j}}\right), \operatorname{ord}_{(0,0)}\left(v_{j}(x, y)\right)\right\} \\
=\operatorname{ord}_{(0,0)} h \cdot \sum_{j=1}^{r} \operatorname{ord}_{(0,0)} v_{j} \\
=\operatorname{ord}_{(0,0)} h \cdot \operatorname{ord}_{(0,0)} f \\
=\operatorname{ord}_{p} V \cdot \operatorname{ord}_{p} W
\end{gathered}
$$

Q.E.D.

Exercises

(1) Let M be a Riemann surface. Show that the divisor map (\cdot) : $\mathcal{K}(M)^{*} \rightarrow \operatorname{Div}(M)$ is a homomorphism of (abelian) groups. [Hint: use local coordinates.]
(2) Compute the intersection multiplicity $(V \cdot W)_{(0,0)}$ for $V=\{y-$ $\lambda x=0\}$ and $W=\left\{y^{2}-x^{3}=0\right\}$. (This will depend on $\lambda \in \mathbb{C}$.)
(3) Let $C \subset \mathbb{P}^{2}$ be an algebraic curve of degree $n>1$ and L a (projective) line containing $\left\lfloor\frac{n}{2}\right\rfloor+1$ singular points of C. (Note: $\lfloor\cdot\rfloor$ is the "greatest integer" function, which takes the greatest integer less than a given real number.) Use Bezout's theorem to prove that $C \supset L$ hence cannot be irreducible. [Hint: prove first that the intersection multiplicity of L and C at each singular point through which L passes, is at least 2.]
(4) Let $C \subset \mathbb{P}^{2}$ be an algebraic curve of degree 4 with 4 singular points. Using Bezout's theorem and Prop. 12.2.5, prove that C cannot be irreducible. [Hint: use the Hint from (3) together with a conic Q through the following 5 points: the 4 singularities of C plus one more point of C.]
(5) A degree d algebraic curve $C \subset \mathbb{P}^{2}$ can be taken to go through any $\frac{(d+1)(d+2)}{2}-1$ distinct points. (This is just because $\operatorname{dim}\left(S_{3}^{d}\right)=$ $\frac{(d+1)(d+2)}{2}$.) Prove that if all of these points are taken to lie in a single curve E of degree $e<\frac{d}{2}+1$, then C is reducible.
(6) Compute $(V \cdot W)_{(0,0)}$ for $V=\left\{y^{3}-x^{5}+x^{6}=0\right\}$ and $W=\left\{y^{3}+\right.$ $\left.x^{3} y^{2}+\lambda x^{5}=0\right\}$ by locally normalizing V. (As in (2), the answer will depend on λ.)
(7) Let $C \subset \mathbb{P}^{2}$ be the quartic curve defined by $X^{2} Y Z+Y^{2} X Z+$ $X^{4}+Y^{4}=0$. (a) Prove that C has one singularity, at $[1: 0: 0](=$ $[Z: X: Y]$), and say what type it is. (b) Using Bézout's Theorem and stereographic projection, construct a normalization $\mathbb{P}^{1} \xrightarrow{\varphi} C$.
(c) Compute the divisor (in the coordinate t on \mathbb{P}^{1}) of the meromorphic function $\varphi^{*} y$ (where $y=\frac{Y}{Z}$).
(8) To understand the equivalence of our definition of intersection multiplicity with those in Remark 12.2.8, proceed as follows. (a) [Relating our definition to resultants]. Compute ord ${ }_{0}$ of the resultant $\mathcal{R}(v, w) \in \mathbb{C}\{x\}$ of two Weierstrass polynomials of degrees n, m : pulling back via $t \mapsto t^{m n}(=x)$ and dividing by $m n$ does not change this order, but breaks v, w into linear factors whose resultants are of the form $\tilde{y}_{\mu+i}-\tilde{z}_{v+j}$ as in $\S 12.4$; then apply Prop. 9.1.4. (b) [Relating resultants to local rings]. Show that the determinant of multiplication by g on $\mathbb{C}\{x\}[y] /(f)$ is $\mathcal{R}(f, g)$ (by using (9.1.2)), then consult $\S 1.6$ of [Fulton, Introduction to Intersection Theory in Algebraic Geometry].

[^0]: ${ }^{1}$ Here "zero" refers to the fact that we are taking a formal sum of zero-dimensional subvarieties (i.e. points) in \mathbb{P}^{2}.

[^1]: ${ }^{2}$ For instance, the polynomial $y^{n}-x^{a}$ has order given by the smallest of n and a.

[^2]: ${ }^{3}$ As usual you can think about this resultant in terms of a projection onto the x - (or rather, $[Z: X]$-) axis.

