CHAPTER 12

Intersections of curves

Now we come to the applications of normalization, which will
occupy this chapter and Chapters 14-15. You may recall that in Chap-
ter 2 we studied intersections of an plane algebraic curve C with a
(projective) line L. The points of L N C were each assigned a mul-
tiplicity by restricting the equation of C under a parametrization of
L, and looking at the multplicities of the roots of the resulting one-
variable polynomial. With this definition, the multiplicities added
up to the degree of the curve (cf. Prop. 2.1.15).

If we had tried to replace L by an arbitrary curve E at that point,
we would have run into the problem of no longer knowing how to
locally parametrize E near the intersection points. Now that we can
do this (Prop. 11.2.1), we can pull the defining equation of C back
under the parametrization and look at its order of vanishing at the
intersection point. This leads to the general definition of intersec-
tion multiplicity, and with this in hand that we can finally state (and
prove!) Bézout’s theorem in general. In its proof the intersection divi-
sor will make an appearance, so we begin with a short bit on divisors.

12.1. Divisors on a Riemann surface

Let M be a Riemann surface. The group of divisors on M is the
free abelian group on points of M,

Div(M) := { Y mi[pi]

finite

m; € Z., PiEM}.

The uncountably many symbols [p;] are the generators of this (very
big) abelian group. Associated to a divisor D = Y m;[p;] € Div(M)
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150 12. INTERSECTIONS OF CURVES

is a degree

deg(D) := ) _m;.
The resulting group homomorphism
(12.1.1) Div(M) 28 7.
is called the degree map.

The divisor of a (nontrivial) meromorphic function f is given by

(H)i= L. wp(F)Llp] € Div(aa),
pEM
where v,(f) is the order of f at p (Defn. 3.1.5). Note that the sum is
actually finite (as required by the definition of divisor) since at all but
finitely many points of M, v,(f) = 0. Now K(M)* is a multiplicative
abelian group. Sending f — (f) yields a homomorphism

(12.1.2) K(m)* - Div(m)

of abelian groups, as you will show in an exercise below, which takes
multplication to addition: (fg) = (f) + (), (f 1) = —(f).

With these definitions, the composition of (12.1.2) with (12.1.1)
takes f to Y,cp Vp(f), which by Exercise 2 of Ch. 3 is zero. That is,
dego(-) = 0. Note that one can define meromorphic functions and
divisors more generally on complex 1-manifolds, but it is only in the
compact case (Riemann surfaces) that the divisors of meromorphic
functions are always of degree 0.

12.1.3. EXAMPLE. On P!, the easiest meromorphic functionis z =
%—; € K(P!)*. Writing simply 0, for the points [1 : 0],[0 : 1], its
divisor is (z) = [0] — [00], obviously of degree 0.

12.2. Intersection multiplicities

For a polynomial f(x) in one variable with f(0) = 0, deg(f) is
the exponent of the highest degree term, while the order of vanishing
ordo(f) := vo(f) is the exponent of the term of lowest degree. Order
(unlike degree) also makes sense for power series in 1 variable.
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How does all this generalize to two variables? First, a polyno-
mial F(x, y) can be written as a sum of homogeneous terms. If this is
F=F+F.1+--+F;_1+F; then deg(F) := d (highest homoge-
neous degree) while ord (o) (F) := k (lowest homogeneous degree).
From §6.4, k is also the order of singularity of the curve C = {F = 0}
at (0,0), i.e. the number of tangent lines to C counted with multiplic-
ity. When we don’t want to refer to the polynomial, we will write
ord9)C; remember this is 1 when C is smooth at (0,0), 2 when C
has an ODP (normal crossing) there, and so on. Finally, ord ) also
makes sense for 2-variable power series.

Now suppose V = {f(x,y) = 0}, W = {h(x,y) = 0} are re-
duced affine algebraic curves that intersect properly — i.e. have no
common irreducible components. Then V U W has no repeated com-
ponents, so is itself reduced. Forp € VNW,

(Z(fn)(p) = fx(p)h(p) + he(p)f(p) = fx(p).0+ hx(p).0 =0

and similarly (%(fh))(p) = 0. Therefore VNW C sing(VUW),
and Prop. 8.1.10 yields

(12.2.1) #HVNW} < #{sing(VUW)} < co.

12.2.2. DEFINITION. Assume V and W are irreducible (and dis-
tinct), and let p € VN W. Let U C C? be a neighborhood of p.
Writing the local decomposition of V into irreducibles (uniquely)

VNU=V)+- + VP,
with local normalizations (again, essentially unique)
g b VA (C Q)
ti = (xi(),yi(t)),

we define the (local) intersection multiplicity at p

k
(V-W)p = ; ordo(h(gi(t)))-
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The (global) intersection number is then defined by

VW)= Y (V-W),
peVNW

in which the sum is finite by (12.2.1).

12.2.3. REMARK. (a) If either V or W is smooth, the intersection
number is actually the degree of a divisor,

V-W:= Y (V-W),p
peEVNW

This is because we can regard the smooth one (say, W) as a Riemann
surface and then V- W € Div(W). Alternatively, you can think of
V - W as a formal sum of points of P2, known as a zero-cycle' on P2.
The degree is defined in the same way as for divisors.

(b) The composition 1 o g; appearing in Defn. 12.2.2 will frequently
be written ¢ (h) — that is, we are pulling the function / back by the

local normalization g;“.

The local intersection multiplicities are well-defined essentially
by the uniqueness of local normalizations. They also have some rea-
sonable properties:

12.2.4. PROPOSITION. (V-W), = (W -V),.
12.2.5. PROPOSITION. (V- W), > ord,(V) - ord,(W), with equality
precisely when none of V's tangents at p coincide with the tangents of W

at p.

We will postpone proof of these results to §§12.4-12.5, since the
details are a bit tedious.

THere “zero” refers to the fact that we are taking a formal sum of zero-dimensional
subvarieties (i.e. points) in P2



12.2. INTERSECTION MULTIPLICITIES 153

12.2.6. EXAMPLE. Here are two pictures of smooth curves meet-
ing at a point p:

\
\

| N

distinct tangents

N (1)

In each case, ord,V - ord,W = 1 because the curves are smooth. But
in the first case, (V - W) = 2, while in the second (which has distinct
tangents) (V- W) = 1.
12.2.7. EXAMPLE. Leta,b,m,n € N with
ged(n,a) = ged(m,b) = 1.
Then by Prop. 12.2.5, we should have?

({y” =x"} {y" = xb}> 00) > min(n,a) - min(m, b).

Let’s check this by actually computing the left-hand side. The nor-
malization of {y" = x} isjust ¢ S (17,11 by Example 11.5.1. Writ-

b we have

ingh=y"—x
g (h) =g (y" — ") = (#)" — (")’ = " — 4"

and the order of this at (0,0) is the least of am and bn:
n_ ay ., f,m _— b — mi
({y =x"}{y x }) 00) min(am, bn).
This clearly satisfies the inequality, and it is easy to cook up an ex-

ample where equality doesn’t hold: withn =3,a =4, m =2,b=9
it becomes 8 > 6.

ZFor instance, the polynomial y" — x? has order given by the smallest of n and a.
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To extend (V - W), to the more general setting where V = }_m;V;
and W = Y n Wy with {V;} and {W} irreducibles, we simply put

(V : W)p = Zm]nk(V] : Wk)p'
jk

12.2.8. REMARK. Here are two other approaches to local intersec-
tion multiplicity which give the same numbers.

(a) The commutative algebra approach makes use of localiza-
tion. Recall that C(x,y) denotes the fraction field of C[x,y]. Let
p = (ab) € C2. The local ring at p, denoted O, is the subset
of C(x,y) consisting of rational functions % (here G1,G2 € Clx,y])
with Gy (p) # 0. You can easily check that this is a ring, and it obvi-
ously contains C[x, y]. It has a unique maximal ideal m, consisting
of functions which vanish at p.

Now let V.= {f = 0}, W = {h = 0} be as above, and assume
p € VNW. Writing (f, h), for the ideal in O, generated by f and I,
we define

(V-W), :=dime (0,/(f, h)p)
by viewing the quotient O,/ (f,h), as a vector space. (Note that
from this definition, invariance of (V - W), under projectivities is
immediately clear.) As a simple example, we know that the intersec-
tion multiplicity at p = (0,0) of {x = 0} and {y?> — x = 0} should be
2. The quotient vector space, indeed, has basis 1,y. See Chapter 4 of
[L. Flatto, Poncelet’s Theorem] for more on this approach.

(b) For an approach via resultants, it is convenient to work with
homogeneous polynomials. Write V = {F = 0}, W = {H = 0},
P=[Py: P :P) € VNW (in homogeneous coordinates [Z : X : Y]
on IP?). Assume that [0 : 0 : 1] neither belongs to (i) C U D, nor (ii)
any line joining points of C N D, nor (iii) any line tangent to C or D
at a point of C N D. Then we may define

(V- W)p := ordjp,.p,|(Ry(F, H)).
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Here we are thinking of F, H as elements of C[Z, X][Y]; so the resul-
tant Ry (F, H), which eliminates Y, is a polynomial in Z and X. It
is in fact homogeneous and of degree deg(F) - deg(H). Its order at
[Py : P1] is just the highest power of (PyX — P;Z) dividing it.
Justifying this definition takes a bit of work, but it leads imme-
diately to a proof of Bezout since the intersection multiplicities have
to add up to deg Ry (F, H) = degV - deg W by construction. This is
the point of view taken in [F. Kirwan, Complex Algebraic Curves].

12.3. Bézout’s theorem

We first do a quick recap of Prop. 2.1.15:

12.3.1. PROPOSITION. Let C = {F(Z,X,Y) = 0} C IP? be a degree
d curve, L (=2 PY) C IP? a line not contained in C. Then (L -C) = d.

PROOF. By a change of coordinates, we may assume L = {Y =
0}and [0:1:0] ¢ C. Then by the Fundamental Theorem of Algebra,

k
F(Z,X,0) = ](X - &;2)%,
i=1

where Y¥_, d; = d since F is homogeneous of degree d. Hence C N
L={[1:a;:0]},.

Passing to affine coordiantes (f = [](x — «;)%) and locally nor-
malizing L at («;,0) by ¢ WL a; + t, we have

(L - C)(a0) := ordo(g; f) = di-
We conclude that (L-C) = Y. d; = d. O

12.3.2. THEOREM. [E. BEZOUT, 1779] Let C,E C P? be properly
intersecting projective algebraic curves. Then (C - E) = deg C - deg E.

PROOF. Assume C is irreducible. Let k = deg E, and choose lines
Ly,..., L avoiding the points of CNE. Write E = {H(Z, X,Y) = 0},

3As usual you can think about this resultant in terms of a projection onto the x- (or
rather, [Z : X]-) axis.
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L; ={A;(Z,X,Y) = 0}. Then by Propositions 12.2.4 and 12.3.1,
(C-Lj) = (Lj-C) = degC,

and

k
(C- (U}‘Zle)) =) (C-Lj) =degC-degE.
=1

Now by Example 7.3.5, the quotient of two homogeneous poly-
nomials of the same degree gives a meromorphic function on projective
space. H is of degree k and each A, is of degree 1, so we may define

Writing o : C — IP? (with ¢(C) = C) for the normalization, we have
by Example 7.3.6 c*¢ € K(C). We can compute the divisor of this
meromorphic function if we notice that locally about each point of
CNE [resp. CN (UL;)], ¢ [resp. %] gives a defining equation for E
[resp. UL;]. So by Defn. 12.2.2,

()= Y, vp(c"p)lpl + )Y, v(c 9)q]

peCNE qeCN(UL;)

= ), ordp(cp)lp] — ) ords(c” )]
peCNE q€CN(UL;)

= ), (C-E}plp] — ), (C-(ULy))lql-
peECNE q€CN(UL;)

But as divisors of meromorphic functions on Riemann surfaces have
degree 0,

0=deg((c"p)) = ), (C-E)y — ), (C-(ULj)),
peCNE geCn(UL))
= (C-E)—degC-degE.
Finally, if C is reducible, break it into irreducible components and
sum the results! ]

12.3.3. REMARK. In terms of zero-cycles (cf. Remark 12.2.3(a)),
Bézout is saying that C - E has degree deg C - deg E.
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12.4. Proof of Proposition 12.2.4

We now show the symmetry of intersection numbers. Write V' =
{f =0}, W= {h =0}, p € VNW. For simplicity assume that
p = (0,0), V and W are irreducible, and the defining (polynomial)
equations are in the form

F=y"+Bi(x)y" - +Bu(x), h=y"+b(x)y" 4 - +by(x).
We decompose these according to (10.2.3): viz.,
f:ul.vl...vr, h:uz.wl...ws

where the v}, wy are irreducible Weierstrass polynomials. For the
roots of v; [resp. wi] on a slit disk {|x| < p, x ¢ R.o} we shall
write yg)(x) (w =1,...,m;) [resp. zf,k)(x) (v =1,...,1n0)]. On the
non-slit x-disk these become multivalued, and we will assume that
counterclockwise analytic continuation sends y;, — 11 to keep the
numbering simple. As in §11.2, the gfj ) (t") [resp. Z,(/k) (#")] are well-
defined on a small t-disk {|¢t| < pg}, and we have*

70, () = 7 (&™)

th

for some primitive m j root of unity (. (This changes the branch

you start at when arg(t) = 0.) Parametrize {v; = 0} and {wy = 0}

by g;(£) := ("1, 71/ (7)) resp. Gy(t) = (¢, 20 (1)),
We then have the key identity

(12.4.1) H wy (t”k’”f 7L, (t”"’”’))
po=1

ngm; ~(k ngm;
= Ty Ty {730k () — 2, (#7) |

11k
(124.2) =+ T Loy (mm, 20, (),
1/0:1
“Warning: you cannot write (5” 0" = (Gm)MO"it" = t" inside the argument

+(7) 20

of yy , since this assumes 7’ is well-defined on an entire disk (whereas only its
composition with the m h-power map is!).



158 12. INTERSECTIONS OF CURVES

which uses the factorization of each Weierstrass polynomial (at each
fixed x) into a product of linear factors. Bearing in mind that rotation
of a disk by 27t/m; does not change the order of a function at 0, we

compute
ordo((124.1)) = i, Y ordo (we(t", 7,1, (")) )
Ho=1

= Nk ordy <wk(tmj’%(])(tmj))>
= nkmj ordo(g;wk).

Dividing this by m;ny and applying }.;_; };_ gives

) _ordg (g]*Hwk> =) ordg(gih) = (V- W),
j k j
Similarly
Ordo((12.4.2)) = nkm]- Ordo(G;Uj),)
and dividing out m;n; and summing yields (W - V),. Q.E.D.

12.5. Proof of Proposition 12.2.5

With the same notation as in the last section, we also write out
the irreducible Weierstrass polynomials

vj =y" + V) )y 4+ a(()j)(x).

m]-—l
Note that a(()j ) (x) is the product of the multivalued roots yg ) (x). We

have ord o 0)v; < mj, };0rd(gg)v; = ord(g)f, and

ord(olo)(v]-(x,y)) < ordo(aé])(x)) = ;jordo(a(()])(t i)

1 o)

] yozl
ordo (7" (t")).



EXERCISES 159

Therefore

(V-W), = ZY%OI‘C]O (h(t’”f,gg)(tmj)))
i=

> Z(Ord(o,o)h) - min {ordo(tmf),ordo(yg)(tmf))}
j=1

r
> (ord (o)) - Y, min {ordy(#"), ord ) (v5(x,y)) }
j=1

r
= ord(olo)h . Z ord(olo)vj
j=1

= Ord(olo)h . Ord(olo)f
- Orde . Orde ’
Q.E.D.

Exercises

(1) Let M be a Riemann surface. Show that the divisor map (-) :
K(M)* — Div(M) isa homomorphism of (abelian) groups. [Hint:
use local coordinates.]

(2) Compute the intersection multiplicity (V- W), for V. = {y —
Ax =0} and W = {y?> — x> = 0}. (This will depend on A € C.)

(3) Let C C IP? be an algebraic curve of degree n > 1 and L a (projec-
tive) line containing | 5 | + 1 singular points of C. (Note: |- | is the
“greatest integer” function, which takes the greatest integer less
than a given real number.) Use Bezout’s theorem to prove that
C D L hence cannot be irreducible. [Hint: prove first that the in-
tersection multiplicity of L and C at each singular point through
which L passes, is at least 2.]

(4) Let C C IP? be an algebraic curve of degree 4 with 4 singular
points. Using Bezout’s theorem and Prop. 12.2.5, prove that C
cannot be irreducible. [Hint: use the Hint from (3) together with
a conic Q through the following 5 points: the 4 singularities of C
plus one more point of C.]



160 12. INTERSECTIONS OF CURVES

(5) A degree d algebraic curve C C IP? can be taken to go through
any (@+1)(d+2)
2

%.) Prove that if all of these points are taken to lie in a

— 1 distinct points. (This is just because dim(S%) =

single curve E of degree e < % + 1, then C is reducible.

(6) Compute (V- W) for V.= {y° —x° +x° =0} and W = {y° +
x3y? + Ax® = 0} by locally normalizing V. (As in (2), the answer
will depend on A.)

(7) Let C C IP? be the quartic curve defined by X*YZ + Y?XZ +
X*+Y* = 0. (a) Prove that C has one singularity, at [1:0:0] (=
[Z:X:Y]), and say what type it is. (b) Using Bézout’s Theorem

and stereographic projection, construct a normalization IP! Ae)
(c) Compute the divisor (in the coordinate ¢ on IP!) of the mero-
morphic function ¢*y (where y = %).

(8) To understand the equivalence of our definition of intersection
multiplicity with those in Remark 12.2.8, proceed as follows. (a)
[Relating our definition to resultants]. Compute ordy of the resul-
tant R (v, w) € C{x} of two Weierstrass polynomials of degrees
n,m: pulling back via t — t""(= x) and dividing by mn does
not change this order, but breaks v, w into linear factors whose
resultants are of the form 7,,; — Z,,; as in §124; then apply
Prop. 9.1.4. (b) [Relating resultants to local rings]. Show that
the determinant of multiplication by g on C{x}[y]/(f) is R(f, )
(by using (9.1.2)), then consult §1.6 of [Fulton, Introduction to
Intersection Theory in Algebraic Geometry].



