
CHAPTER 12

Intersections of curves

Now we come to the applications of normalization, which will
occupy this chapter and Chapters 14-15. You may recall that in Chap-
ter 2 we studied intersections of an plane algebraic curve C with a
(projective) line L. The points of L ∩ C were each assigned a mul-
tiplicity by restricting the equation of C under a parametrization of
L, and looking at the multplicities of the roots of the resulting one-
variable polynomial. With this definition, the multiplicities added
up to the degree of the curve (cf. Prop. 2.1.15).

If we had tried to replace L by an arbitrary curve E at that point,
we would have run into the problem of no longer knowing how to
locally parametrize E near the intersection points. Now that we can
do this (Prop. 11.2.1), we can pull the defining equation of C back
under the parametrization and look at its order of vanishing at the
intersection point. This leads to the general definition of intersec-
tion multiplicity, and with this in hand that we can finally state (and
prove!) Bézout’s theorem in general. In its proof the intersection divi-
sor will make an appearance, so we begin with a short bit on divisors.

12.1. Divisors on a Riemann surface

Let M be a Riemann surface. The group of divisors on M is the
free abelian group on points of M,

Div(M) :=

K

∑
finite

mi[pi]

????? mi ∈ Z , pi ∈ M

L
.

The uncountably many symbols [pi] are the generators of this (very
big) abelian group. Associated to a divisor D = ∑ mi[pi] ∈ Div(M)
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150 12. INTERSECTIONS OF CURVES

is a degree
deg(D) := ∑ mi.

The resulting group homomorphism

(12.1.1) Div(M)
deg−→ Z.

is called the degree map.
The divisor of a (nontrivial) meromorphic function f is given by

( f ) := ∑
p∈M

νp( f ).[p] ∈ Div(M),

where νp( f ) is the order of f at p (Defn. 3.1.5). Note that the sum is
actually finite (as required by the definition of divisor) since at all but
finitely many points of M, νp( f ) = 0. Now K(M)∗ is a multiplicative
abelian group. Sending f → ( f ) yields a homomorphism

(12.1.2) K(M)∗
(·)−→ Div(M)

of abelian groups, as you will show in an exercise below, which takes
multplication to addition: ( f g) = ( f ) + (g), ( f−1) = −( f ).

With these definitions, the composition of (12.1.2) with (12.1.1)
takes f to ∑p∈M νp( f ), which by Exercise 2 of Ch. 3 is zero. That is,
deg ◦(·) = 0. Note that one can define meromorphic functions and
divisors more generally on complex 1-manifolds, but it is only in the
compact case (Riemann surfaces) that the divisors of meromorphic
functions are always of degree 0.

12.1.3. EXAMPLE. On P1, the easiest meromorphic function is z =
Z1
Z0

∈ K(P1)∗. Writing simply 0, ∞ for the points [1 : 0], [0 : 1], its
divisor is (z) = [0]− [∞], obviously of degree 0.

12.2. Intersection multiplicities

For a polynomial f (x) in one variable with f (0) = 0, deg( f ) is
the exponent of the highest degree term, while the order of vanishing
ord0( f ) := ν0( f ) is the exponent of the term of lowest degree. Order
(unlike degree) also makes sense for power series in 1 variable.



12.2. INTERSECTION MULTIPLICITIES 151

How does all this generalize to two variables? First, a polyno-
mial F(x, y) can be written as a sum of homogeneous terms. If this is
F = Fk + Fk+1 + · · ·+ Fd−1 + Fd, then deg(F) := d (highest homoge-
neous degree) while ord(0,0)(F) := k (lowest homogeneous degree).
From §6.4, k is also the order of singularity of the curve C = {F = 0}
at (0, 0), i.e. the number of tangent lines to C counted with multiplic-
ity. When we don’t want to refer to the polynomial, we will write
ord(0,0)C; remember this is 1 when C is smooth at (0, 0), 2 when C
has an ODP (normal crossing) there, and so on. Finally, ord(0,0) also
makes sense for 2-variable power series.

Now suppose V = { f (x, y) = 0}, W = {h(x, y) = 0} are re-
duced affine algebraic curves that intersect properly — i.e. have no
common irreducible components. Then V ∪W has no repeated com-
ponents, so is itself reduced. For p ∈ V ∩ W,

( ∂
∂x ( f h))(p) = fx(p)h(p) + hx(p) f (p) = fx(p).0 + hx(p).0 = 0

and similarly ( ∂
∂y ( f h))(p) = 0. Therefore V ∩ W ⊂ sing(V ∪ W),

and Prop. 8.1.10 yields

(12.2.1) #{V ∩ W} ≤ #{sing(V ∪ W)} < ∞.

12.2.2. DEF INITION. Assume V and W are irreducible (and dis-
tinct), and let p ∈ V ∩ W. Let U ⊂ C2 be a neighborhood of p.
Writing the local decomposition of V into irreducibles (uniquely)

V ∩ U = V∆
1 + · · ·+ V∆

k ,

with local normalizations (again, essentially unique)

gi : ∆ → V∆
i (⊂ C2)

ti +→ (xi(t), yi(t)),

we define the (local) intersection multiplicity at p

(V · W)p :=
k

∑
i=1

ord0(h(gi(t))).



152 12. INTERSECTIONS OF CURVES

The (global) intersection number is then defined by

(V · W) := ∑
p∈V∩W

(V · W)p,

in which the sum is finite by (12.2.1).

12.2.3. REMARK. (a) If either V or W is smooth, the intersection
number is actually the degree of a divisor,

V · W := ∑
p∈V∩W

(V · W)p[p].

This is because we can regard the smooth one (say, W) as a Riemann
surface and then V · W ∈ Div(W). Alternatively, you can think of
V · W as a formal sum of points of P2, known as a zero-cycle1 on P2.
The degree is defined in the same way as for divisors.

(b) The composition h ◦ gi appearing in Defn. 12.2.2 will frequently
be written g∗i (h) – that is, we are pulling the function h back by the
local normalization g∗i .

The local intersection multiplicities are well-defined essentially
by the uniqueness of local normalizations. They also have some rea-
sonable properties:

12.2.4. PROPOSITION. (V · W)p = (W · V)p.

12.2.5. PROPOSITION. (V ·W)p ≥ ordp(V) · ordp(W), with equality
precisely when none of V’s tangents at p coincide with the tangents of W
at p.

We will postpone proof of these results to §§12.4-12.5, since the
details are a bit tedious.

1Here “zero” refers to the fact that we are taking a formal sum of zero-dimensional
subvarieties (i.e. points) in P2.
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12.2.6. EXAMPLE. Here are two pictures of smooth curves meet-
ing at a point p:

distinct tangents

(II)(I)

In each case, ordpV · ordpW = 1 because the curves are smooth. But
in the first case, (V · W) = 2, while in the second (which has distinct
tangents) (V · W) = 1.

12.2.7. EXAMPLE. Let a, b, m, n ∈ N with

gcd(n, a) = gcd(m, b) = 1.

Then by Prop. 12.2.5, we should have2

#
{yn = xa} · {ym = xb}

$

(0,0)
≥ min(n, a) · min(m, b).

Let’s check this by actually computing the left-hand side. The nor-
malization of {yn = xa} is just t

g+−→ (tn, ta) by Example 11.5.1. Writ-
ing h = ym − xb, we have

g∗(h) = g∗(ym − xb) = (ta)m − (tn)b = tam − tbn

and the order of this at (0, 0) is the least of am and bn:

#
{yn = xa} · {ym = xb}

$

(0,0)
= min(am, bn).

This clearly satisfies the inequality, and it is easy to cook up an ex-
ample where equality doesn’t hold: with n = 3, a = 4, m = 2, b = 9
it becomes 8 ≥ 6.

2For instance, the polynomial yn − xa has order given by the smallest of n and a.
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To extend (V ·W)p to the more general setting where V = ∑ mjVj

and W = ∑ nkWk with {Vj} and {Wk} irreducibles, we simply put

(V · W)p := ∑
j,k

mjnk(Vj · Wk)p.

12.2.8. REMARK. Here are two other approaches to local intersec-
tion multiplicity which give the same numbers.

(a) The commutative algebra approach makes use of localiza-
tion. Recall that C(x, y) denotes the fraction field of C[x, y]. Let
p = (a, b) ∈ C2. The local ring at p, denoted Op, is the subset
of C(x, y) consisting of rational functions G1

G2
(here G1, G2 ∈ C[x, y])

with G2(p) ∕= 0. You can easily check that this is a ring, and it obvi-
ously contains C[x, y]. It has a unique maximal ideal mp consisting
of functions which vanish at p.

Now let V = { f = 0}, W = {h = 0} be as above, and assume
p ∈ V ∩ W. Writing ( f , h)p for the ideal in Op generated by f and h,
we define

(V · W)p := dimC

!
Op/( f , h)p

"

by viewing the quotient Op/( f , h)p as a vector space. (Note that
from this definition, invariance of (V · W)p under projectivities is
immediately clear.) As a simple example, we know that the intersec-
tion multiplicity at p = (0, 0) of {x = 0} and {y2 − x = 0} should be
2. The quotient vector space, indeed, has basis 1, y. See Chapter 4 of
[L. Flatto, Poncelet’s Theorem] for more on this approach.

(b) For an approach via resultants, it is convenient to work with
homogeneous polynomials. Write V̄ = {F = 0}, W̄ = {H = 0},
P = [P0 : P1 : P2] ∈ V̄ ∩ W̄ (in homogeneous coordinates [Z : X : Y]
on P2). Assume that [0 : 0 : 1] neither belongs to (i) C ∪ D, nor (ii)
any line joining points of C ∩ D, nor (iii) any line tangent to C or D
at a point of C ∩ D. Then we may define

(V̄ · W̄)P := ord[P0:P1]
(RY(F, H)).
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Here we are thinking of F, H as elements of C[Z, X][Y]; so the resul-
tant RY(F, H), which eliminates Y,3 is a polynomial in Z and X. It
is in fact homogeneous and of degree deg(F) · deg(H). Its order at
[P0 : P1] is just the highest power of (P0X − P1Z) dividing it.

Justifying this definition takes a bit of work, but it leads imme-
diately to a proof of Bezout since the intersection multiplicities have
to add up to degRY(F, H) = deg V̄ · deg W̄ by construction. This is
the point of view taken in [F. Kirwan, Complex Algebraic Curves].

12.3. Bézout’s theorem

We first do a quick recap of Prop. 2.1.15:

12.3.1. PROPOSITION. Let C = {F(Z, X, Y) = 0} ⊂ P2 be a degree
d curve, L (∼= P1) ⊂ P2 a line not contained in C. Then (L · C) = d.

PROOF. By a change of coordinates, we may assume L = {Y =

0} and [0 : 1 : 0] /∈ C. Then by the Fundamental Theorem of Algebra,

F(Z, X, 0) =
k

∏
i=1

(X − αiZ)di ,

where ∑k
i=1 di = d since F is homogeneous of degree d. Hence C ∩

L = {[1 : αi : 0]}k
i=1.

Passing to affine coordiantes ( f = ∏(x − αi)
di) and locally nor-

malizing L at (αi, 0) by t
gi+−→ αi + t, we have

(L · C)(αi,0) := ord0(g∗i f ) = di.

We conclude that (L · C) = ∑ di = d. □

12.3.2. THEOREM. [E. BÉZOUT, 1779] Let C, E ⊂ P2 be properly
intersecting projective algebraic curves. Then (C · E) = deg C · deg E.

PROOF. Assume C is irreducible. Let k = deg E, and choose lines
L1, . . . , Lk avoiding the points of C ∩ E. Write E = {H(Z, X, Y) = 0},

3As usual you can think about this resultant in terms of a projection onto the x- (or
rather, [Z : X]-) axis.
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Lj = {Λj(Z, X, Y) = 0}. Then by Propositions 12.2.4 and 12.3.1,

(C · Lj) = (Lj · C) = deg C,

and

(C · (∪k
j=1Lj)) =

k

∑
j=1

(C · Lj) = deg C · deg E.

Now by Example 7.3.5, the quotient of two homogeneous poly-
nomials of the same degree gives a meromorphic function on projective
space. H is of degree k and each Λj is of degree 1, so we may define

ϕ :=
H

Λ1 · · · · · Λk
∈ K(P2).

Writing σ : C̃ → P2 (with σ(C̃) = C) for the normalization, we have
by Example 7.3.6 σ∗ϕ ∈ K(C̃). We can compute the divisor of this
meromorphic function if we notice that locally about each point of
C ∩ E [resp. C ∩ (∪Lj)], ϕ [resp. 1

ϕ ] gives a defining equation for E
[resp. ∪Lj]. So by Defn. 12.2.2,

(σ∗ϕ) = ∑
p∈C∩E

νp(σ
∗ϕ)[p] + ∑

q∈C∩(∪Lj)

νq(σ
∗ϕ)[q]

= ∑
p∈C∩E

ordp(σ
∗ϕ)[p] − ∑

q∈C∩(∪Lj)

ordq(σ
∗ 1

ϕ )[q]

= ∑
p∈C∩E

(C · E)p[p] − ∑
q∈C∩(∪Lj)

(C · (∪Lj))q[q].

But as divisors of meromorphic functions on Riemann surfaces have
degree 0,

0 = deg((σ∗ϕ)) = ∑
p∈C∩E

(C · E)p − ∑
q∈C∩(∪Lj)

(C · (∪Lj))q

= (C · E)− deg C · deg E.

Finally, if C is reducible, break it into irreducible components and
sum the results! □

12.3.3. REMARK. In terms of zero-cycles (cf. Remark 12.2.3(a)),
Bézout is saying that C · E has degree deg C · deg E.
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12.4. Proof of Proposition 12.2.4

We now show the symmetry of intersection numbers. Write V =

{ f = 0}, W = {h = 0}, p ∈ V ∩ W. For simplicity assume that
p = (0, 0), V and W are irreducible, and the defining (polynomial)
equations are in the form

f = ym + B1(x)ym−1 + · · ·+ Bm(x) , h = yn + b1(x)yn−1 + · · ·+ bn(x).

We decompose these according to (10.2.3): viz.,

f = u1 · v1 · · · vr , h = u2 · w1 · · ·ws

where the vj, wk are irreducible Weierstrass polynomials. For the
roots of vj [resp. wk] on a slit disk {|x| < ρ, x /∈ R>0} we shall

write y(j)
µ (x) (µ = 1, . . . , mj) [resp. z(k)ν (x) (ν = 1, . . . , nk)]. On the

non-slit x-disk these become multivalued, and we will assume that
counterclockwise analytic continuation sends yµ +→ yµ+1 to keep the

numbering simple. As in §11.2, the ỹ(j)
µ (tmj) [resp. z̃(k)ν (tnk)] are well-

defined on a small t-disk {|t| < ρ0}, and we have4

ỹ(j)
µ+µ0

(tmj) = ỹ(j)
µ ((ζ

µ0
mj t)

mj)

for some primitive mth
j root of unity ζmj . (This changes the branch

you start at when arg(t) = 0.) Parametrize {vj = 0} and {wk = 0}
by gj(t) := (tmj , ỹ(j)

µ (tmj)) resp. Gk(t) := (tnk , z̃(k)ν (tnk)).
We then have the key identity

(12.4.1)
mj

∏
µ0=1

wk

#
tnkmj , ỹ(j)

µ+µ0
(tnkmj)

$

= ∏
mj
µ0=1 ∏nk

ν0=1

I
ỹ(j)

µ+µ0
(tnkmj)− z̃(k)ν+ν0

(tnkmj)
J

(12.4.2) = ±
nk

∏
ν0=1

vj

#
tnkmj , z̃(k)ν+ν0

(tnkmj)
$

,

4Warning: you cannot write (ζ
µ0
mj t)

mj = (ζmj)
µ0mj tmj = tmj inside the argument

of ỹ(j)
µ , since this assumes ỹ(j)

µ is well-defined on an entire disk (whereas only its
composition with the mth

j -power map is!).
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which uses the factorization of each Weierstrass polynomial (at each
fixed x) into a product of linear factors. Bearing in mind that rotation
of a disk by 2π/mj does not change the order of a function at 0, we
compute

ord0((12.4.1)) = nk

mj

∑
µ0=1

ord0

#
wk(t

mj , ỹ(j)
µ+µ0

(tmj))
$

= nkmj ord0

#
wk(t

mj , ỹ(j)
µ (tmj))

$

= nkmj ord0(g∗j wk).

Dividing this by mjnk and applying ∑r
j=1 ∑s

k=1 gives

∑
j

ord0

7
g∗j ∏

k
wk

8
= ∑

j
ord0(g∗j h) = (V · W)p.

Similarly
ord0((12.4.2)) = nkmj ord0(G∗

k vj), )

and dividing out mjnk and summing yields (W · V)p. Q.E.D.

12.5. Proof of Proposition 12.2.5

With the same notation as in the last section, we also write out
the irreducible Weierstrass polynomials

vj = ymj + a(j)
mj−1(x)ymj−1 + · · ·+ a(j)

0 (x).

Note that a(j)
0 (x) is the product of the multivalued roots y(j)

µ (x). We
have ord(0,0)vj ≤ mj, ∑j ord(0,0)vj = ord(0,0) f , and

ord(0,0)(vj(x, y)) ≤ ord0(a(j)
0 (x)) =

1
mj

ord0(a(j)
0 (tmj))

=
1

mj
ord0

7 mj

∏
µ0=1

ỹ(j)
µ+µ0

(tmj)

8

= ord0(ỹ
(j)
µ (tmj)).
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Therefore

(V · W)p =
r

∑
j=1

ord0

#
h(tmj , ỹ(j)

µ (tmj))
$

≥
r

∑
j=1

(ord(0,0)h) · min
I

ord0(tmj), ord0(ỹ
(j)
µ (tmj))

J

≥ (ord(0,0)h) ·
r

∑
j=1

min
I

ord0(tmj), ord(0,0)(vj(x, y))
J

= ord(0,0)h ·
r

∑
j=1

ord(0,0)vj

= ord(0,0)h · ord(0,0) f

= ordpV · ordpW ,

Q.E.D.

Exercises
(1) Let M be a Riemann surface. Show that the divisor map (·) :

K(M)∗ → Div(M) is a homomorphism of (abelian) groups. [Hint:
use local coordinates.]

(2) Compute the intersection multiplicity (V · W)
(0,0) for V = {y −

λx = 0} and W = {y2 − x3 = 0}. (This will depend on λ ∈ C.)
(3) Let C ⊂ P2 be an algebraic curve of degree n > 1 and L a (projec-

tive) line containing
Rn

2

S
+ 1 singular points of C. (Note: ⌊·⌋ is the

“greatest integer” function, which takes the greatest integer less
than a given real number.) Use Bezout’s theorem to prove that
C ⊃ L hence cannot be irreducible. [Hint: prove first that the in-
tersection multiplicity of L and C at each singular point through
which L passes, is at least 2.]

(4) Let C ⊂ P2 be an algebraic curve of degree 4 with 4 singular
points. Using Bezout’s theorem and Prop. 12.2.5, prove that C
cannot be irreducible. [Hint: use the Hint from (3) together with
a conic Q through the following 5 points: the 4 singularities of C
plus one more point of C.]
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(5) A degree d algebraic curve C ⊂ P2 can be taken to go through
any (d+1)(d+2)

2 − 1 distinct points. (This is just because dim(Sd
3) =

(d+1)(d+2)
2 .) Prove that if all of these points are taken to lie in a

single curve E of degree e < d
2 + 1, then C is reducible.

(6) Compute (V · W)
(0,0) for V = {y3 − x5 + x6 = 0} and W = {y3 +

x3y2 + λx5 = 0} by locally normalizing V. (As in (2), the answer
will depend on λ.)

(7) Let C ⊂ P2 be the quartic curve defined by X2YZ + Y2XZ +

X4 + Y4 = 0. (a) Prove that C has one singularity, at [1:0:0] (=
[Z:X:Y]), and say what type it is. (b) Using Bézout’s Theorem

and stereographic projection, construct a normalization P1
ϕ
↠ C.

(c) Compute the divisor (in the coordinate t on P1) of the mero-
morphic function ϕ∗y (where y = Y

Z ).
(8) To understand the equivalence of our definition of intersection

multiplicity with those in Remark 12.2.8, proceed as follows. (a)
[Relating our definition to resultants]. Compute ord0 of the resul-
tant R(v, w) ∈ C{x} of two Weierstrass polynomials of degrees
n, m: pulling back via t +→ tmn(= x) and dividing by mn does
not change this order, but breaks v, w into linear factors whose
resultants are of the form ỹµ+i − z̃ν+j as in §12.4; then apply
Prop. 9.1.4. (b) [Relating resultants to local rings]. Show that
the determinant of multiplication by g on C{x}[y]/( f ) is R( f , g)
(by using (9.1.2)), then consult §1.6 of [Fulton, Introduction to
Intersection Theory in Algebraic Geometry].


