CHAPTER 13

Meromorphic 1-forms on a Riemann surface

In the next chapter we will see one more application of normalization, via intersection numbers: the degree-genus formula. As more will be needed for its proof, presently we make a detour to define and study differential forms (with poles) on manifolds — how to patch them together via local coordinates, how to pull them back under a morphism, and so forth. Like meromorphic functions, 1-forms have an associated divisor. In contrast to the function case, the degree of this divisor is not zero: it tells you the genus of the Riemann surface, via the so-called Poincaré-Hopf theorem. This result will be key to proving the Riemann-Hurwitz and genus formulae.

13.1. Differential 1-forms

These are the expressions you integrate over paths in calculus and complex analysis. For example, on \(\mathbb{R}^2 \)

\[
\eta = F(x, y)dx + G(x, y)dy
\]

is a 1-form. For a differentiable map

\[
\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^2
\]

given by

\[(u, v) \mapsto (x(u, v), y(u, v)),\]

the pullback of \(\eta \) by \(\Phi \) is

(13.1.1)

\[
\Phi^* \eta := \left\{ F(x(u, v), y(u, v)) \frac{\partial x}{\partial u}(u, v) \, du + G(x(u, v), y(u, v)) \frac{\partial y}{\partial u}(u, v) \right\} \, du
\]

\[
+ \left\{ F(x(u, v), y(u, v)) \frac{\partial x}{\partial v}(u, v) \, dv + G(x(u, v), y(u, v)) \frac{\partial y}{\partial v}(u, v) \right\} \, dv.
\]
A “0-form” is just a function $f(x, y)$, and

$$
\Phi^* f := f \circ \Phi = f(x(u, v), y(u, v))
$$

is nothing but precomposing with Φ. (13.1.1) is simply the analogue for 1-forms of “precomposition with Φ”. This is exactly what you are doing when you change variables in an integral.

We want to generalize 1-forms from \mathbb{R}^2 to real 2-manifolds (and then to complex 1-manifolds), which seems to call for a bit of motivation.

Let M be a differentiable real 2-manifold, $f: M \to \mathbb{R}$ a differentiable function, and $p \in M$ a point. If $M \subset \mathbb{R}^3$, then the notion of “taking partial derivatives of f at p in directions tangent to M” makes immediate sense – you just precompose f with a (differentiable) path in M having a given tangent at p, and differentiate with respect to the variable parametrizing this path.

In abstract differential topology, one has no embedding in \mathbb{R}^3. Rather, the differentiability of M is arranged by requiring the transition functions $\Phi_{\alpha\beta}$ relative to local coordinates on an open cover, to be smooth:

$$
T_pM := \text{vector space of linear differential operators (at } p \in U_\alpha\)
$$
and tangent bundle
\[TM := \cup_{p \in M} T_p M. \]
One has a projection map \(\pi : TM \to M \) with \(\pi^{-1}(p) = T_p M \). A global section of \(TM \), that is, is a smooth map \(\sigma : M \to TM \) with \(\pi \circ \sigma = \text{id}_M \), is called a vector field on \(M \). (Typically one writes \(\vec{v} \), with the understanding that \(\vec{v}(p) \in T_p M \).)

Now integration is dual to differentiation, so differentials are dual to tangent vectors. For \(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial y^a} \) a dual basis (for the dual vector space) is \(dx^a, dy^a \): we write
\[
\begin{align*}
\left. dx \left(\frac{\partial}{\partial x} \right) \right|_p &= 1, & \left. dy \left(\frac{\partial}{\partial x} \right) \right|_p &= 0, \\
\left. dx \left(\frac{\partial}{\partial y} \right) \right|_p &= 0, & \left. dy \left(\frac{\partial}{\partial y} \right) \right|_p &= 1.
\end{align*}
\]
The cotangent spaces are then
\[T^*_p M \cong \mathbb{R} \left\langle \left. dx^a \right|_p, \left. dy^a \right|_p \right\rangle. \]
Global sections of the cotangent bundle \(T^* M = \cup_{p \in M} T^*_p M \) are then the differential 1-forms on \(M \). In local coordinates a differential 1-form \(\eta \) looks like:
\[
(13.1.2) \quad \eta_a = F_a(x^a, y^a) dx^a + G_a(x^a, y^a) dy^a.
\]
Just as a function on \(M \) given locally by \(\{g_a : V_a \to \mathbb{R}\} \) must satisfy
\[g_{\beta} \ restriced_{V_{\beta}} = (g_{\alpha} \ restriced_{V_{\alpha}}) \circ \Phi_{\alpha \beta} \left(\Phi_{\alpha \beta}^* \left(g_{\alpha} \ restriced_{V_{\alpha}} \right) \right), \]
the \(\{\eta_a\} \) are subject to compatibility conditions
\[\eta_{\beta} \ restriced_{V_{\beta}} = \Phi_{\alpha \beta}^* \left(\eta_{\alpha} \ restriced_{V_{\alpha}} \right). \]
Now since \(M \) (hence each \(\Phi_{\alpha \beta} \)) is smooth, smoothness of \(\eta_a \) (i.e. of \(F_a \) and \(G_a \) in (13.1.2)) is preserved under pullback, and it makes sense

\[^1 \text{To define smoothness one has to put a manifold structure on } TM, \text{ which I won’t do here.} \]
to define

\[A^1_R(M) := \text{smooth, real-valued 1-forms on } M \]

\[= \text{collections } \{ \eta_a \} \text{ with } \{ F_\alpha, G_\alpha \} \text{ infinitely differentiable.} \]

For a complex 1-manifold, which we recall (from §2.2) is a special kind of smooth real 2-manifold (the \(\Phi_{\alpha\beta} \) are conformal), the labels on the diagram change:

\[\text{Omitting subscript } \alpha's \text{ for the moment, and writing a subscript } C \text{ to indicate } \otimes_R C, \text{ one has} \]

\[T_{C,p}M = C \left\langle \frac{\partial}{\partial x} \bigg|_p, \frac{\partial}{\partial y} \bigg|_p \right\rangle \cong C \left\langle \frac{\partial}{\partial \bar{z}} \bigg|_p, \frac{\partial}{\partial z} \bigg|_p \right\rangle \]

\[T^*_{C,p}M \otimes C = C \left\langle dx \bigg|_p, dy \bigg|_p \right\rangle \cong C \left\langle dz \bigg|_p, d\bar{z} \bigg|_p \right\rangle, \]

where \(\frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x} - \sqrt{-1} \frac{\partial}{\partial y} \right), \frac{\partial}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + \sqrt{-1} \frac{\partial}{\partial y} \right), \]

\[dz := dx + \sqrt{-1}dy, \quad d\bar{z} := dx - \sqrt{-1}dy. \] (This makes \(dz(\frac{\partial}{\partial z}) = 1, \quad d\bar{z}(\frac{\partial}{\partial \bar{z}}) = 0, \]

\[d\bar{z}(\frac{\partial}{\partial z}) = 0, \quad dz(\frac{\partial}{\partial \bar{z}}) = 1 \text{ so that the bases are dual.} \]

A smooth section of the complexified cotangent bundle \(T^*_C M \) thus looks locally like

\[F(x, y)dz + G(x, y)d\bar{z} \]

\[= (F + G)dx + \sqrt{-1}(F - G)dy, \]

for \(F \) and \(G \) smooth (infinitely differentiable) complex-valued functions. The 1-forms we are after are substantially more restricted:
13.1.3. DEFINITION. A holomorphic [resp. meromorphic] 1-form \(\omega \in \Omega^1(M) \) [resp. \(K^1(M) \)]\(^2\) is a collection of expressions
\[
\omega_\alpha = f_\alpha(z_\alpha)dz_\alpha,
\]
with \(f_\alpha : V_\alpha \to \mathbb{C} \) holomorphic [resp. meromorphic], satisfying
\[
(13.1.4) \quad \omega_\beta|_{V_\alpha^\beta} = \Phi_\alpha^\beta \left(\omega_\alpha|_{V_\alpha^\beta} \right) \quad \forall \alpha, \beta.
\]

Explicitly, (13.1.4) says that
\[
f_\beta(z_\beta)dz_\beta = f_\alpha(\Phi_\alpha^\beta(z_\beta))d(\Phi_\alpha^\beta(z_\beta))
= f_\alpha(\Phi_\alpha^\beta(z_\beta))\Phi'_\alpha^\beta(z_\beta)dz_\beta,
\]
and is thus equivalent to
\[
(13.1.5) \quad f_\beta(z_\beta) = f_\alpha(\Phi_\alpha^\beta(z_\beta))\Phi'_\alpha^\beta(z_\beta).
\]

Given \(\omega_1, \omega_2 \in K^1(M) \), we can consider their quotient as a meromorphic function \(\frac{\omega_1}{\omega_2} \in K(M) \). This is because in local coordinates, one can “cancel the \(dz \)'s” — viz., \(\frac{f_\alpha(z_\alpha)dz_\alpha}{g_\alpha(z_\alpha)dz_\alpha} = \frac{f_\alpha(z_\alpha)}{g_\alpha(z_\alpha)} \) — and the compatibility condition (13.1.5) implies that such quotients do patch together (the \(\Phi'_\alpha^\beta(z_\beta) \) factors cancel). Conversely, a meromorphic function times a meromorphic 1-form gives a new meromorphic 1-form.

13.1.6. EXAMPLE. On \(M = \mathbb{P}^1 \), let \(\omega_1 = \omega \) be arbitrary and \(\omega_2 = dz \). Here \(z = \frac{Z_1}{Z_0} \) on \(\mathbb{P}^1 \) as usual, and \(dz \) looks as if it should be not just meromorphic but holomorphic. But in the “coordinate at \(\infty \)” \(w = \frac{Z_0}{Z_1} \), \(dz \) becomes \(d\left(\frac{1}{i} \right) = -\frac{dw}{w} \). So \(dz \) in fact has a pole of order 2 at \([0 : 1]\).

Now consider \(F(z) := \frac{\omega_1}{\omega_2} = \frac{\omega}{dz} \in K(\mathbb{P}^1) \) (\(\cong \mathbb{C}(z) \) by Theorem 3.1.7(a)); we have then \(\omega = F(z)dz \). Therefore
\[
K^1(\mathbb{P}^1) = \left\{ \frac{P(z)}{Q(z)}dz \mid P \in \mathbb{C}[z], \; Q \in \mathbb{C}[z] \setminus \{0\} \right\}.
\]

13.1.7. EXAMPLE. For \(M = \mathbb{C}/\Lambda \) a complex 1-torus, write \(u \) for the coordinate on \(\mathbb{C} \). Since each transition function \(\Phi_{\alpha\beta} \) sends \(u \mapsto u + \lambda \) (for some \(\lambda \in \Lambda \), their derivatives \(\Phi'_{\alpha\beta} \) are all identically 1.

\(^2\)Recall the notation \(K(M) \) for meromorphic functions; this is short for \(K^0(M) \), as one can think of such functions as meromorphic 0-forms.
Hence, du gives a well-defined global holomorphic 1-form on M (i.e. belongs to $\Omega^1(\mathbb{C}/\Lambda)$).

So take $\omega_1 = \omega$ arbitrary, $\omega_2 = du$. The same argument as above, using Theorem 3.1.7(b), gives

$$\mathcal{K}^1(\mathbb{C}/\Lambda) \cong \{ f(u)du \mid f = \Lambda\text{-periodic meromorphic function on } \mathbb{C} \}.$$

13.1.8. Example. Let $f \in \mathcal{K}(M)$ be a meromorphic function. We can represent f as a collection of maps $f_\alpha : V_\alpha \to \mathbb{P}^1$. The 1-forms $df_\alpha := \frac{df}{dz_\alpha}dz_\alpha$ are then compatible (via pullback) with the transition functions, as in (13.1.4); hence, they patch together to give a global meromorphic 1-form $df \in \mathcal{K}^1(M)$ called the differential of f.

Let $\omega \in \mathcal{K}^1(M)$ be given by a collection $\{ f_\alpha(z_\alpha)dz_\alpha \}$; we would like to define its order $\nu_p(\omega)$ at a point $p \in U_\alpha \subset M$. We simply set

$$\nu_p(\omega) := \nu_{z_\alpha(p)}(f_\alpha);$$

if this is negative ω has a pole at p. As a well-definedness check, suppose $p \in U_\beta$ also. Then (using (13.1.5))

$$\nu_p(f_\beta) = \nu_p(f_\alpha \cdot \Phi_{\alpha\beta}'(z_\beta)) = \nu_p(f_\alpha)$$

since, as a biholomorphism, $\Phi_{\alpha\beta}$ must have nonvanishing derivative at every point. If ω has a pole at $p \in U_\alpha$, then its residue is

$$Res_p(\omega) := Res_{z_\alpha(p)}(f_\alpha) = \frac{1}{2\pi i} \int_{C_\epsilon(p)} f_\alpha(z_\alpha)dz_\alpha$$

where $C_\epsilon(p)$ is a small circle (in V_α) about $z_\alpha(p)$. The well-definedness check boils down to change of variable in the integral.

Let $\omega = \{ f_\alpha(z_\alpha)dz_\alpha \} \in \mathcal{K}^1(M)$ be a form, and $\gamma = \bigcup \gamma_\alpha \subset M$ be a smooth real closed curve. Then we define

$$\int_\gamma \omega := \sum_{\alpha} \int_{\gamma_\alpha} f_\alpha(z_\alpha)dz_\alpha,$$

3A “real curve” means something 1-dimensional over \mathbb{R} (not \mathbb{C}), so you should think of a closed path on the Riemann surface; and $\gamma_\alpha \subset U_\alpha$ are the segments from which the path is pieced together.
where we observe that 1-forms have been set up so that the right-hand side is independent of choices of local coordinates and the partition of γ into local pieces. The following can be viewed as a version of either Stokes’s theorem or Cauchy’s theorem.

13.1.9. Proposition. Let $\Gamma \subset M$ be a closed region\(^4\) with piecewise smooth boundary $\partial \Gamma = \gamma$.

Assume that the meromorphic form ω is holomorphic on some open set U containing Γ. Then

$$\int_{\gamma} \omega = 0.$$

13.1.10. Proposition. Again let $\partial \Gamma = \gamma$, but assume that ω is only holomorphic on an open set containing γ (so that Γ may contain poles of ω).

(a) Then we have the residue formula

$$\frac{1}{2\pi \sqrt{-1}} \int_{\gamma} \omega = \sum_{\overset{p \in \Gamma}{\nu_p(\omega) < 0}} \text{Res}_p(\omega).$$

(b) In general for $\omega \in \mathcal{K}^1(M)$, $\sum_{p \in \mathcal{M}} \text{Res}_p(\omega) = 0$.

\(^4\)The technical term here is 2-chain, though we won’t get into this here.
PROOF. For the residue formula (a), let $\Gamma_0 \subset \Gamma$ be a union of disks about those $p \in \Gamma$ where ω has poles, and $\gamma_0 = \partial \Gamma_0$ the sum of circular paths. Apply Prop. 13.1.9 to the pair $\Gamma - \Gamma_0, \gamma - \gamma_0$.

Applying the residue formula to the case $\Gamma = M, \gamma = \emptyset$ gives (b). \qed

13.1.11. COROLLARY. Consider a nonconstant meromorphic function $f \in \mathcal{K}(M)$. Then

(a) $\sum_{p \in M} v_p(f) = 0$, i.e. the number of zeroes (counted with multiplicity) equals the number of poles (counted with multiplicity); and

(b) $\# \{ f^{-1}(\alpha) \}$ (counted with multiplicity) is independent of $\alpha \in \mathbb{P}^1$.

PROOF. (a) is Prop. 13.1.10(b) applied to $\omega = \frac{df}{f}$. Replacing f by $f - \alpha$, and noting that the number of poles doesn’t change, by (a) the number of zeroes can’t change either, giving (b). \qed

13.1.12. DEFINITION. The degree of f, $\deg(f)$, is defined to be the number in Cor. 13.1.11(b). Thinking of f as a covering map from $M \to \mathbb{P}^1$, $\deg(f)$ can be visualized as the number of branches (or “sheets”).

13.1.13. REMARK. We have said nothing about $\int_\gamma \omega$ when γ is not a boundary:

Indeed, there is nothing we can say yet — this is the study of periods, which depend on the complex analytic structure of M. We will be able to compute some periods of holomorphic forms on algebraic curves later in the course.

\footnote{You may wish to refer back to Remark 3.1.9.}
The usual statement of this theorem is that the sum of indices of any6 vector field \vec{v} on a compact oriented smooth manifold M is equal to the Euler characteristic χ_M; we’ll only worry about the case where the real dimension of M is 2. In that case, the index $\text{Ind}_p(\vec{v})$ of \vec{v} at $p \in M$ is the number of counterclockwise rotations done by (the head of) \vec{v} as one goes once counterclockwise on a small circle about p. It can only be nonzero if $\vec{v}(p) = 0$.

I’ll give a heuristic proof of the italicized statement, which is probably more illuminating than a formal one. Subdivide a given compact smooth oriented real 2-manifold M into triangles:

Then put one marked point on each edge, vertex, and face of the triangulation:

Next draw the following vector field on each triangle:

6technical point: \vec{v} should have only finitely many zeroes
These match up to give a global vector field on M. Evidently the index of this $\bar{\nu}$ is -1 at the marked points on the edges, and $+1$ at the marked points on the faces and vertices. Hence,

$$\sum_{p \in M} \text{Ind}_p(\bar{\nu}) = \#F - \#E + \#V = \chi_M = 2 - 2g$$

where g is the genus of M. That (13.2.1) holds for any vector field $\bar{\nu}$ on M is the version of the theorem proved by Poincaré. It still holds if we allow $\bar{\nu}$ to have singularities at a finite set of points $\{p_1, \ldots, p_n\}$ (i.e. it is just a section over $M \setminus \{p_1, \ldots, p_n\}$), provided one adds the indices of $\bar{\nu}$ at the p_i to the sum.

In fact, (13.2.1) even holds if $\bar{\nu}$ is replaced by a smooth 1-form $\eta \in A^1_R(M \setminus \{p_1, \ldots, p_n\})$. The idea is to use a metric on M, i.e. a nonvanishing section of $\text{Sym}^2(T^*M)$, to smoothly identify TM with T^*M. The corresponding notion of index, if (in local coordinates at p) η takes the form $Fdx + Gdy$, is

$$\text{Ind}_p \eta := \frac{1}{2\pi} \oint d \arctan \left(\frac{G}{F} \right),$$

and once again the sum in (13.2.1) must be over all zeroes of η and the $\{p_i\}$.

Now let M be a compact complex 1-manifold, and write $\omega \in \mathcal{K}^1(M)$ locally in the form $f.dx + g.dy$ where f, g are complex-valued. To get into the above setting, we may of course view M as a smooth real 2-manifold, and take the real part of ω:

$$\eta := \Re(\omega) = \Re(f)dx + \Re(g)dy.$$

Let p be a zero or pole of ω, and put $\nu = \nu_p(\omega)$. Of course, in a local holomorphic coordinate z about p with $z(p) = 0$, we have\footnote{up to multiplication by a locally nonvanishing holomorphic function (which will not affect index)}

$$\omega \approx z^{\nu}dz = r^{\nu} \left(\cos(\nu \theta) + \sqrt{-1} \sin(\nu \theta) \right) (dx + \sqrt{-1}dy)
= r^{\nu} \left(\cos(-\nu \theta) - \sqrt{-1} \sin(-\nu \theta) \right) dx + r^{\nu} \left(\sin(-\nu \theta) + \sqrt{-1} \cos(-\nu \theta) \right) dy.$$
So locally we have for the real part
\[\frac{\eta}{r^\nu} \approx \cos(-\nu \theta)dx + \sin(-\nu \theta)dy, \]
and thus by (13.2.2)
\[\text{Ind}_p(\eta) = \frac{1}{2\pi} \oint d[-\nu \theta] = -\nu = -\nu_p(\omega) \]
\[\implies \sum_p \nu_p(\omega) = 2g - 2. \]
We have arrived at the following corollary of (13.2.1), which will henceforth be the meaning of "Poincaré-Hopf" for us:

13.2.3. Theorem. Let \(\omega \in \mathcal{K}^1(M)^* \) be a nonvanishing meromorphic 1-form on a Riemann surface of genus \(g \). Then
\[\left(\text{# of zeroes} - \text{# of poles} \right) \text{ of } \omega = 2g - 2. \]

13.2.4. Remark. Just as for meromorphic functions we can consider the divisor
\[(\omega) := \sum_{p \in M} \nu_p(\omega)[p] \]
of a meromorphic 1-form. In this context, the Theorem says that
\[\deg((\omega)) = 2g - 2. \]

Exercises
1. Let \(E = \{ y^2 - 4x^3 - 4x = 0 \} \), \(\omega = \frac{dx}{y} \bigg|_E \in \Omega^1(E) \). (We can talk about holomorphic 1-forms on a smooth algebraic curve now, because they are Riemann surfaces by the "smooth normalization" Theorem 7.0.1.) Consider the complex analytic automorphism \(A : E \to E \) sending \((x, y) \mapsto (-x, iy) \), and "apply" this to the 1-form: compute the pullback \(A^*(\omega) \).

2. (a) In Example 13.1.6, \(dz \) defines a meromorphic differential 1-form on \(\mathbb{P}^1 \). Compute its divisor \((dz) \). Explain why \(\Omega^1(\mathbb{P}^1) = \{ 0 \} \). (b) What is the divisor of \(du \) on \(\mathbb{C}/\Lambda \), from Example 13.1.7?
Explain why it is the unique holomorphic 1-form on \(\mathbb{C}/\Lambda \) up to scale.

(3) Practice with pullbacks: for the map \(\Phi : \mathbb{R}^2 \to \mathbb{R}^2 \) that sends \((x, y) \mapsto (u(x, y), v(x, y)) := (x^2 - 3xy, y^3 + x) \), compute \(\Phi^* \omega \) where \(\omega = udv + vdu \). Write it in the form \(f(x, y)dx + g(x, y)dy \).

(4) Continuing from Exercise 5 of Chapter 3, compute the pullback of \(\frac{dx}{y} \) under \(\varphi : \mathbb{P}^1 \to \mathbb{C} \). [Hint: simply plug in your final \(x(z) \) and \(y(z) \) from that exercise. After simplification, your answer should be very simple indeed.]

(5) Consider a double cover \(M \to \mathbb{P}^1 \) branched over 8 points (i.e. \(\varphi \) is 2:1 except at these points, where it is locally of the form \(w \mapsto w^2 \)). Compute the genus of \(M \) by considering the divisor of \(\varphi^* \frac{dz}{z} \) and applying Poincaré-Hopf in the form of Remark 13.2.4. (For simplicity, assume none of the 8 points are 0 or \(\infty \).)

(6) Two loops are linked (inside some space) if we cannot contract one to a point (in that space) without passing through the other. In the neighborhood of a node (ODP), a curve is locally approximated by \(xy = 0 \); let \(c_1 \) and \(c_2 \) be the circles \(\{ y = 0 \} \cap \{|x| = \epsilon \} \) and \(\{ x = 0 \} \cap \{|y| = \epsilon \} \), respectively. Certainly, these are not linked in \(\mathbb{C}^2 \). Show that, however, they are linked in the 3-sphere \(S_\epsilon^3 = \{|x|^2 + |y|^2 = \epsilon^2\} \), by considering the integral \(\frac{1}{2\pi i} \int_{c_1} \frac{dx}{x} \). [Hint: what is \(\{ x = 0 \} \cap S_\epsilon^3 \)?]