
CHAPTER 13

Meromorphic 1-forms on a Riemann surface

In the next chapter we will see one more application of normal-
ization, via intersection numbers: the degree-genus formula. As
more will be needed for its proof, presently we make a detour to de-
fine and study differential forms (with poles) on manifolds — how to
patch them together via local coordinates, how to pull them back un-
der a morphism, and so forth. Like meromorphic functions, 1-forms
have an associated divisor. In contrast to the function case, the de-
gree of this divisor is not zero: it tells you the genus of the Riemann
surface, via the so-called Poincaré-Hopf theorem. This result will be
key to proving the Riemann-Hurwitz and genus formulae.

13.1. Differential 1-forms

These are the expressions you integrate over paths in calculus
and complex analysis. For example, on R2

η = F(x, y)dx + G(x, y)dy

is a 1-form. For a differentiable map

Φ : R2 → R2

given by
(u, v) +→ (x(u, v), y(u, v)),

the pullback of η by Φ is
(13.1.1)
Φ∗η := F (x(u, v), y(u, v)) d(x(u, v)) + G(x(u, v), y(u, v))d(y(u, v))

=
!

F(x(u, v), y(u, v)) ∂x
∂u (u, v) + G(x(u, v), y(u, v)) ∂y

∂u (u, v)
"

du

+
!

F(x(u, v), y(u, v)) ∂x
∂v (u, v) + G(x(u, v), y(u, v)) ∂y

∂v (u, v)
"

dv.

161



162 13. MEROMORPHIC 1-FORMS ON A RIEMANN SURFACE

A “0-form” is just a function f (x, y), and

Φ∗ f := f ◦ Φ = f (x(u, v), y(u, v))

is nothing but precomposing with Φ. (13.1.1) is simply the analogue
for 1-forms of “precomposition with Φ” . This is exactly what you
are doing when you change variables in an integral.

We want to generalize 1-forms from R2 to real 2-manifolds (and
then to complex 1-manifolds), which seems to call for a bit of moti-
vation.

Let M be a differentiable real 2-manifold, f : M → R a differ-
entiable function, and p ∈ M a point. If M ⊂ R3, then the notion
of “taking partial derivatives of f at p in directions tangent to M”
makes immediate sense – you just precompose f with a (differen-
tiable) path in M having a given tangent at p, and differentiate with
respect to the variable parametrizing this path.

In abstract differential topology, one has no embedding in R3.
Rather, the differentiability of M is arranged by requiring the transi-
tion functions Φαβ relative to local coordinates on an open cover, to
be smooth:

R
2

R
2

(x  ,y  )(x  ,y  )

Uαβ UU
β α

α α

Φ

V V

αβ

β

β α

β

Vβ
α

V
β
α

(This was discussed at the beginning of §2.2.) One then defines the
tangent spaces

TpM := vector space of linear differential operators (at p ∈ Uα)
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∼= R

T
∂

∂xα

????
p

,
∂

∂yα

????
p

U

and tangent bundle
TM := ∪p∈MTpM.

One has a projection map π : TM → M with π−1(p) = TpM. A
global section of TM, that is, is a smooth1 map σ : M → TM with
π ◦ σ = idM, is called a vector field on M. (Typically one writes $v,
with the understanding that $v(p) ∈ TpM.)

Now integration is dual to differentiation, so differentials are dual
to tangent vectors. For ∂

∂xα
, ∂

∂yα
a dual basis (for the dual vector space)

is dxα, dyα: we write

dx
/

∂

∂x

0
= 1 , dy

/
∂

∂x

0
= 0 ,

dx
/

∂

∂y

0
= 0 , dy

/
∂

∂y

0
= 1.

The cotangent spaces are then

T∗
p M ∼= R

5
dxα|p , dyα|p

6
.

Global sections of the cotangent bundle T∗M = ∪p∈MT∗
p M are then

the differential 1-forms on M. In local coordinates a differential 1-form
η looks like:

(13.1.2) ηα = Fα(xα, yα)dxα + Gα(xα, yα)dyα.

Just as a function on M given locally by {gα : Vα → R} must satisfy

gβ

??
Vα

β
=

#
gα|Vβ

α

$
◦ Φαβ

#
= Φ∗

αβ

#
gα|Vβ

α

$$
,

the {ηα} are subject to compatibility conditions

ηβ

??
Vα

β
= Φ∗

αβ

#
ηα|Vβ

α

$
.

Now since M (hence each Φαβ) is smooth, smoothness of ηα (i.e. of Fα

and Gα in (13.1.2)) is preserved under pullback, and it makes sense

1To define smoothness one has to put a manifold structure on TM, which I won’t
do here.
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to define

A1
R(M) := smooth, real-valued 1-forms on M

= collections {ηα} with {Fα, Gα} infinitely differentiable.

For a complex 1-manifold, which we recall (from §2.2) is a special
kind of smooth real 2-manifold (the Φαβ are conformal), the labels on
the diagram change:

Uαβ UU
β α

Φ

V V

C C

z z

αβ

αβ

β α
Vβ

α
V

β
α

Omitting subscript α’s for the moment, and writing a subscript C to
indicate ⊗RC, one has

TC,pM = C

T
∂

∂x

????
p

,
∂

∂y

????
p

U
∼= C

T
∂

∂z

????
p

,
∂

∂z̄

????
p

U

T∗
C,pM ⊗ C = C

5
dx|p , dy|p

6
∼= C

5
dz|p , dz̄|p

6
,

where ∂
∂z := 1

2

#
∂

∂x −
√
−1 ∂

∂y

$
, ∂

∂z̄ := 1
2

#
∂

∂x +
√
−1 ∂

∂y

$
, dz := dx +

√
−1dy, dz̄ := dx −

√
−1dy. (This makes dz( ∂

∂z ) = 1, dz( ∂
∂z̄ ) = 0,

dz̄( ∂
∂z ) = 0, dz̄( ∂

∂z̄ ) = 1 so that the bases are dual.) A smooth section
of the complexified cotangent bundle T∗

C M thus looks locally like

F(x, y)dz + G(x, y)dz̄

= (F + G)dx +
√
−1(F − G)dy,

for F and G smooth (infinitely differentiable) complex-valued func-
tions. The 1-forms we are after are substantially more restricted:
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13.1.3. DEF INITION. A holomorphic [resp. meromorphic] 1-form
ω ∈ Ω1(M) [resp. K1(M)]2 is a collection of expressions

ωα = fα(zα)dzα ,

with fα : Vα → C holomorphic [resp. meromorphic], satisfying

(13.1.4) ωβ

??
Vα

β
= Φ∗

αβ

#
ωα|Vβ

α

$
∀α, β.

Explicitly, (13.1.4) says that

fβ(zβ)dzβ = fα(Φαβ(zβ))d(Φαβ(zβ))

= fα(Φαβ(zβ))Φ′
αβ(zβ)dzβ,

and is thus equivalent to

(13.1.5) fβ(zβ) = fα(Φαβ(zβ))Φ′
αβ(zβ).

Given ω1, ω2 ∈ K1(M), we can consider their quotient as a mero-
morphic function ω1

ω2
∈ K(M). This is because in local coordinates,

one can “cancel the dz’s” — viz., fα(zα)dzα

gα(zα)dzα
= fα(zα)

gα(zα)
— and the com-

patibility condition (13.1.5) implies that such quotients do patch to-
gether (the Φ′

αβ(zβ) factors cancel). Conversely, a meromorphic func-
tion times a meromorphic 1-form gives a new meromorphic 1-form.

13.1.6. EXAMPLE. On M = P1, let ω1 = ω be arbitrary and ω2 =

dz. Here z = Z1
Z0

on P1 as usual, and dz looks as if it should be not just

meromorphic but holomorphic. But in the “coordinate at ∞” w = Z0
Z1

,
dz becomes d( 1

w ) = − dw
w2 . So dz in fact has a pole of order 2 at [0 : 1].

Now consider F(z) := ω1
ω2

= ω
dz ∈ K(P1) (∼= C(z) by Theorem

3.1.7(a)); we have then ω = F(z)dz. Therefore

K1(P1) =

M
P(z)
Q(z)

dz
???? P ∈ C[z], Q ∈ C[z] \ {0}

N
.

13.1.7. EXAMPLE. For M = C/Λ a complex 1-torus, write u for
the coordinate on C. Since each transition function Φαβ sends u +→
u + λ (for some λ ∈ Λ), their derivatives Φ′

αβ are all identically 1.

2Recall the notation K(M) for meromorphic functions; this is short for K0(M), as
one can think of such functions as meromorphic 0-forms.
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Hence, du gives a well-defined global holomorphic 1-form on M (i.e.
belongs to Ω1(C/Λ)).

So take ω1 = ω arbitrary, ω2 = du. The same argument as above,
using Theorem 3.1.7(b), gives

K1(C/Λ) ∼= { f (u)du | f = Λ-periodic meromorphic function on C} .

13.1.8. EXAMPLE. Let f ∈ K(M) be a meromorphic function. We
can represent f as a collection of maps fα : Vα → P1. The 1-forms
d fα := d fα

dzα
dzα are then compatible (via pullback) with the transition

functions, as in (13.1.4); hence, they patch together to give a global
meromorphic 1-form d f ∈ K1(M) called the differential of f .

Let ω ∈ K1(M) be given by a collection { fα(zα)dzα}; we would
like to define its order νp(ω) at a point p ∈ Uα ⊂ M. We simply set

νp(ω) := νzα(p)( fα);

if this is negative ω has a pole at p. As a well-definedness check,
suppose p ∈ Uβ also. Then (using (13.1.5))

νp( fβ) = νp

#
fα · Φ′

αβ(zβ)
$
= νp( fα)

since, as a biholomorphism, Φαβ must have nonvanishing derivative
at every point. If ω has a pole at p ∈ Uα, then its residue is

Resp(ω) := Reszα(p)( fα) =
1

2π
√
−1

˛

C'(p)
fα(zα)dzα

where C0(p) is a small circle (in Vα) about zα(p). The well-definedness
check boils down to change of variable in the integral.

Let ω = { fα(zα)dzα} ∈ K1(M) be a form, and γ = ∪γα ⊂ M be
a smooth real closed curve.3 Then we define

ˆ

γ
ω := ∑

α

ˆ

γα

fα(zα)dzα,

3A “real curve” means something 1-dimensional over R (not C), so you should
think of a closed path on the Riemann surface; and γα ⊂ Uα are the segments from
which the path is pieced together.
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where we observe that 1-forms have been set up so that the right-
hand side is independent of choices of local coordinates and the par-
tition of γ into local pieces. The following can be viewed as a version
of either Stokes’s theorem or Cauchy’s theorem.

13.1.9. PROPOSITION. Let Γ ⊂ M be a closed region4 with piecewise
smooth boundary ∂Γ = γ.

M

U

γΓ

Assume that the meromorphic form ω is holomorphic on some open set U
containing Γ. Then

ˆ

γ
ω = 0.

13.1.10. PROPOSITION. Again let ∂Γ = γ, but assume that ω is only
holomorphic on an open set containing γ (so that Γ may contain poles of
ω).

M

p
ν (ω)<0p

γ

Γ

(a) Then we have the residue formula

1
2π

√
−1

ˆ

γ
ω = ∑

p∈Γ
νp(ω)<0

Resp(ω).

(b) In general for ω ∈ K1(M), ∑p∈M Resp(ω) = 0.
4The technical term here is 2-chain, though we won’t get into this here.
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PROOF. For the residue formula (a), let Γ0 ⊂ Γ be a union of
disks about those p ∈ Γ where ω has poles, and γ0 = ∂Γ0 the sum of
circular paths. Apply Prop. 13.1.9 to the pair Γ − Γ0, γ − γ0.

Applying the residue formula to the case Γ = M, γ = ∅ gives
(b). □

13.1.11. COROLLARY. Consider a nonconstant meromorphic function
f ∈ K(M). Then

(a) ∑p∈M νp( f ) = 0, i.e. the number of zeroes (counted with multiplicity)
equals the number of poles (counted with multiplicity); and

(b) #{ f−1(α)} (counted with multiplicity) is independent of α ∈ P1.

PROOF. (a) is Prop. 13.1.10(b) applied to ω = d f
f . Replacing f by

f − α, and noting that the number of poles doesn’t change, by (a) the
number of zeroes can’t change either, giving (b). □

13.1.12. DEF INITION. The degree of f , deg( f ), is defined to be the
number in Cor. 13.1.11(b). Thinking of f as a covering map from
M → P1, deg( f ) can be visualized as the number of branches (or
“sheets”).5

13.1.13. REMARK. We have said nothing about
´

γ ω when γ is not
a boundary:

M

γ

Indeed, there is nothing we can say yet — this is the study of periods,
which depend on the complex analytic structure of M. We will be
able to compute some periods of holomorphic forms on algebraic
curves later in the course.

5You may wish to refer back to Remark 3.1.9.
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13.2. Poincaré-Hopf theorem

The usual statement of this theorem is that the sum of indices of
any6 vector field $v on a compact oriented smooth manifold M is equal to
the Euler characteristic χM; we’ll only worry about the case where the
real dimension of M is 2. In that case, the index Indp($v) of$v at p ∈ M
is the number of counterclockwise rotations done by (the head of) $v
as one goes once counterclockwise on a small circle about p. It can
only be nonzero if $v(p) = 0.

I’ll give a heuristic proof of the italicized statement, which is
probably more illuminating than a formal one. Subdivide a given
compact smooth oriented real 2-manifold M into triangles:

etc.

Then put one marked point on each edge, vertex, and face of the
triangulation:

Next draw the following vector field on each triangle:

6technical point: !v should have only finitely many zeroes
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These match up to give a global vector field on M. Evidently the
index of this $v is −1 at the marked points on the edges, and +1 at
the marked points on the faces and vertices. Hence,

(13.2.1) ∑
p∈M

Indp($v) = #F − #E + #V = χM = 2 − 2g

where g is the genus of M. That (13.2.1) holds for any vector field $v
on M is the version of the theorem proved by Poincaré. It still holds
if we allow$v to have singularities at a finite set of points {p1, . . . , pn}
(i.e. it is just a section over M\{p1, . . . , pn}), provided one adds the
indices of $v at the pi to the sum.

In fact, (13.2.1) even holds if $v is replaced by a smooth 1-form
η ∈ A1

R(M\{p1, . . . , pn}). The idea is to use a metric on M, i.e. a
nonvanishing section of Sym2(T∗M), to smoothly identify TM with
T∗M. The corresponding notion of index, if (in local coordinates at
p) η takes the form Fdx + Gdy, is

(13.2.2) Indpη :=
1

2π

‰

d arctan
/

G
F

0
,

and once again the sum in (13.2.1) must be over all zeroes of η and
the {pi}.

Now let M be a compact complex 1-manifold, and write ω ∈
K1(M) locally in the form f .dx+ g.dy where f , g are complex-valued.
To get into the above setting, we may of course view M as a smooth
real 2-manifold, and take the real part of ω:

η := ℜ(ω)
loc
= ℜ( f )dx +ℜ(g)dy.

Let p be a zero or pole of ω, and put ν = νp(ω). Of course, in a local
holomorphic coordinate z about p with z(p) = 0, we have7

ω
loc≈ zνdz = rν

#
cos(νθ) +

√
−1 sin(νθ)

$
(dx +

√
−1dy)

= rν
#

cos(−νθ)−
√
−1 sin(−νθ)

$
dx+ rν

#
sin(−νθ) +

√
−1 cos(−νθ)

$
dy.

7up to multiplication by a locally nonvanishing holomorphic function (which will
not affect index)
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So locally we have for the real part
η

rν
≈ cos(−νθ)dx + sin(−νθ)dy,

and thus by (13.2.2)

Indp(η) =
1

2π

˛

d[−νθ] = −ν = −νp(ω)

=⇒ ∑
p

νp(ω) = 2g − 2.

We have arrived at the following corollary of (13.2.1), which will
henceforth be the meaning of “Poincaré-Hopf” for us:

13.2.3. THEOREM. Let ω ∈ K1(M)∗ be a nonvanishing meromorphic
1-form on a Riemann surface of genus g. Then

(# of zeroes − # of poles
+ ,- .

)

counted with multiplicity

of ω = 2g − 2.

13.2.4. REMARK. Just as for meromorphic functions we can con-
sider the divisor

(ω) := ∑
p∈M

νp(ω)[p]

of a meromorphic 1-form. In this context, the Theorem says that

deg((ω)) = 2g − 2.

Exercises
(1) Let E = {y2 − 4x3 − 4x = 0}, ω = dx

y

???
E
∈ Ω1(E). (We can talk

about holomorphic 1-forms on a smooth algebraic curve now, be-
cause they are Riemann surfaces by the “smooth normalization”
Theorem 7.0.1.) Consider the complex analytic automorphism
A : E → E sending (x, y) +→ (−x, iy), and “apply” this to the
1-form: compute the pullback A∗(ω).

(2) (a) In Example 13.1.6, dz defines a meromorphic differential 1-
form on P1. Compute its divisor (dz). Explain why Ω1(P1) =

{0}. (b) What is the divisor of du on C/Λ, from Example 13.1.7?
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Explain why it is the unique holomorphic 1-form on C/Λ up to
scale.

(3) Practice with pullbacks: for the map Φ : R2 → R2 that sends
(x, y) +→ (u(x, y), v(x, y)) := (x2 − 3xy, y3 + x), compute Φ∗ω

where ω = udv + vdu. Write it in the form f (x, y)dx + g(x, y)dy.
(4) Continuing from Exercise 5 of Chapter 3, compute the pullback

of dx
y under ϕ : P1 → C. [Hint: simply plug in your final x(z)

and y(z) from that exercise. After simplification, your answer
should be very simple indeed.]

(5) Consider a double cover M
ϕ
↠ P1 branched over 8 points (i.e. ϕ

is 2:1 except at these points, where it is locally of the form w +→
w2). Compute the genus of M by considering the divisor of ϕ∗ dz

z
and applying Poincaré-Hopf in the form of Remark 13.2.4. (For
simplicity, assume none of the 8 points are 0 or ∞.)

(6) Two loops are linked (inside some space) if we cannot contract
one to a point (in that space) without passing through the other.
In the neighborhood of a node (ODP), a curve is locally approxi-
mated by xy = 0; let c1 and c2 be the circles {y = 0} ∩ {|x| = 0}
and {x = 0} ∩ {|y| = 0}, respectively. Certainly, these are not
linked in C2. Show that, however, they are linked in the 3-sphere
S3

0 = {|x|2 + |y|2 = 02}, by considering the integral 1
2πi
´

c1
dx
x .

[Hint: what is {x = 0} ∩ S3
0 ? ]


