
CHAPTER 14

The genus formula

We are ready to prove two formulas for the genus of a Riemann
surface (RS) which are especially useful in algebraic geometry. For
the first result (the Riemann-Hurwitz formula), the RS will arise as
a finite branched cover of another RS whose genus is known. The
proof makes essential use of Poincaré-Hopf and a ramification divisor
which we introduce below. For the second result, which is an appli-
cation of the first (and of the intersection theory from Chap. 12), the
RS will arise as the normalization of an irreducible algebraic curve
in P2 with only ordinary double point (ODP) singularities. This is a
very concrete payoff for the preceding hard work: now we can com-
pute the genus of [the desingularization of] a projective algebraic
curve!

14.1. Order and multiplicity for maps of Riemann surfaces

Consider a nonconstant morphism f : M → M′ of Riemann sur-
faces with f (p) = q. In Exercise 4 of Chapter 3, the following was
established: there exist

• neighborhoods U ∋ p, V ∋ q with f (U) ⊂ V, and
• local holomorphic coordinates z : U → C and w : V → C with

z(p) = 0 = w(q),

such that w ◦ f = zν for some unique ν ∈ N. More informally, in
these local coordinates f “takes the form” (w =) f (z) = zν. We write
νp( f ) := ν. This is the ramification index, and f ramifies at p precisely
when it exceeds 1.

14.1.1. REMARK. Note the (small) possibility of confusion if M′ =

P1, since νp(·) already has meaning for meromorphic functions on
173



174 14. THE GENUS FORMULA

M. In that case, we simply have to be clear about whether we are
considering f as a meromorphic function or as a morphism of Rie-
mann surfaces, which is a good thing to do in any case.

For any q ∈ M′, consider the sum

d(q) := ∑
p∈M

with f (p)=q

νp( f ).

If a ramification point p of index d lies over q, then over a nearby
point q0, p is replaced by d points with ramification index 1. This is
by virtue of the local form w = zν, as is the fact that the ramification
points are isolated hence finite in number (M is compact!). Evidently
then, d(q) is constant in q; we will call this constant d ∈ N the map-
ping degree deg( f ) of the morphism f .1 This generalizes Definition
13.1.12.

Here is a more “gentrified” way to define the mapping degree.
We can think of a point q ∈ M′ as a divisor [q] ∈ Div(M′), and “pull
it back” to a divisor on M by the formula

(14.1.2) f−1([q]) := ∑
f (p)=q

νp( f )[p] ∈ Div(M).

We then put (for any q ∈ M′, it doesn’t matter)

deg( f ) := deg
#

f−1([q])
$

%

'= ∑
f (p)=q

νp( f )

(

* .

14.1.3. REMARK. (14.1.2) extends linearly to define a pullback di-
visor f−1(D) ∈ Div(M) (also written f ∗D) for any D ∈ Div(M′).

Associated to f : M → M′, finally, is the ramification divisor

R f := ∑
p∈M

!
νp( f )− 1

"
[p] ∈ Div(M).

By the discussion above, the sum is clearly finite.

1When f is a nonconstant map from M to P1, you can think of it as a meromorphic
function and take the degree of its divisor, deg(( f )), which is always 0. Or, you
can think of it as a morphism of Riemann surfaces and take deg( f ), which is never
0. So that extra parenthesis matters!
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14.2. Riemann-Hurwitz formula

Again take f : M → M′ to be a nonconstant morphism, write
d := deg( f ), and put

r := deg(R f ).

In the following formula, stated by Riemann and proved by Hur-
witz, g resp. g′ will refer to the genus of M resp. M′.

14.2.1. THEOREM. [RIEMANN, 1857; HURWITZ, 1891]

r = 2
@

g + d − dg′ − 1
A

.

14.2.2. REMARK. Some alternative ways to write this result are:

(i) g = (g′ − 1)d + r
2 + 1

(ii) χM = deg( f )χM′ − deg(R f )

These better represent the way you want to think of it: as a formula
for the genus (or Euler characteristic) of M, if you know that of M′

and data about how M “sits over” M′.

PROOF. For p ∈ M with a = νp( f ), we choose local coordinates

z, w as in §14.1 so that z
f+→ za(= w).

We shall need to assume the existence of a nonzero meromorphic
1-form ω ∈ K1(M′). This is obvious if M′ arises as the normaliza-
tion of an algebraic curve in P2, as you can just pull back any non-
constant meromorphic function (say, Z1/Z0) and take its differential.
Every Riemann surface arises in this way, but to see that you need
the Riemann-Roch theorem. We proceed with the proof modulo this
detail.

Locally writing ω = g(w)dw, we have

f ∗ω
loc
= g(za)d(za) = a.g(za)za−1dz ,

hence

νp( f ∗ω) = a.ν0(g) + (a − 1) = νp( f ).ν f (p)(ω) + (νp( f )− 1).
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In Div(M) we have therefore

( f ∗ω) := ∑
p∈M

νp( f ∗ω)[p] = ∑
p

νp( f ).ν f (p)(ω)[p]+∑
p

!
νp( f )− 1

"
[p]

+ ,- .
R f

= ∑
q∈M′

νq(ω) ∑
f (p)=q

νp( f )[p] + R f

= ∑
q∈M′

νq(ω) f−1([q]) + R f

= f−1

7

∑
q

νq(ω)[q]

8
+ R f

= f−1((ω)) + R f ,

where (ω) ∈ Div(M′).
Now f ∗ω ∈ K1(M), and so Poincaré-Hopf on M tells us that

2g − 2 = deg (( f ∗ω)) ,

which by the computation just done

= deg
#

f−1((ω))
$
+ deg R f

= ∑
q

νq(ω) ∑
f (p)=q

νp( f )

+ ,- .
deg( f )

+ r

= deg( f )∑ νq(ω)
+ ,- .
deg((ω))

+ r.

Applying Poincaré-Hopf once more (but on M′), we get that this

= d(2g′ − 2) + r.

So we have shown 2 − 2g = d(2 − 2g′)− r, which is the version of
R-H stated in Remark 14.2.2(ii). □

We turn to some examples.

14.2.3. EXAMPLE. Let C = {y2 = ∏2m
i=1(x − αi)} ⊂ C2, and let

M be the normalization of its projective closure C̄ ⊂ P2. The orig-
inal curve had a projection map to the x-axis ((x, y) +→ x), and this
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extends to
f : M → P1 =: M′,

as depicted below:2

f

ramification points

Clearly g′ = 0, d = 2, and

r = ∑(νp( f )− 1) = 2m

since νp( f )− 1 = 1 at each of the ramification points. So by Remark
14.2.2(i)

g = (0 − 1).2 +
2m
2

+ 1 = m − 1.

14.2.4. EXAMPLE. Let M = M′ = C/Λ be a complex 1-torus;
as usual Λ = {m1λ1 + m2λ2 | m1, m2 ∈ Z}, where λ1, λ2 ∈ C are
independent over R. Now assume αΛ ⊆ Λ for some α ∈ C∗. Then
we have a “complex multiplication” map

M
f−→ M′

z +−→ αz

with R f = 0. You will treat this setting in an exercise below.

14.3. The genus of a projective algebraic curve

Let C = {F(Z, X, Y) = 0} ⊂ P2 be an irreducible algebraic curve
of degree d with S = sing(C) its set of singular points. We assume
that these are all ordinary double points (also called nodes), and that
there are exactly |S| = δ of these; write S = {p1, . . . , pδ}. Of course,
δ = 0 ⇐⇒ S = ∅ ⇐⇒ C is smooth.

2Note that ∞ ∈ P1 is not a branch point of f : since 2m is even,
%

∏2m
i=1(x − αi) has

no monodromy about ∞.
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Denoting by σ : C̃ ↠ C its normalization, we shall deduce from
Theorem 14.2.1 the formula:

14.3.1. THEOREM. C̃ has genus

g =
(d − 1)(d − 2)

2
− δ.

To get a feel for this before launching into the proof, for C smooth
we have

d = 1 =⇒ g = 0,

d = 2 =⇒ g = 0,

d = 3 =⇒ g = 1,

d = 4 =⇒ g = 3,

and so on. For degree 3 with one node, we get

g =
(3 − 1)(3 − 2)

2
− 1 = 0,

as we found using stereographic projection. Indeed, we know how
to parametrize all three genus 0 cases (smooth d = 1, 2; singular
d = 3) by a Riemann sphere.

The rest of this section is devoted to the proof. Begin by choosing
coordinates on P2 so that

• L∞ ∩ C consists of d distinct points,
• none of the tangents to C at its nodes are vertical (i.e. of the form

X = aZ), and
• C does not contain [0 : 0 : 1].

The latter requirement allows us to project from [0 : 0 : 1]: that is, the
map

C x−→ P1 =: M′

given by
[Z : X : Y] +→ [Z : X],

roughly speaking the “projection of C to the x-axis”, is well-defined.
Writing M := C̃, the main idea of the proof of to apply Riemann-
Hurwitz to the composition f = x ◦ σ : M → M′. In a picture,
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where “ODP” [resp. “VT”] refers to a node [resp. point with vertical
tangent]:

P
1

C

Cσ

x

ODP

VT
VT

Now for M′ = P1, g′ = 0 so that Thm. 14.2.1 gives

(14.3.2) r f = 2(genus(M) + deg(x)− 1) = 2(g + d − 1).

In particular, the degree of the map x is d because the projection is
done along vertical lines, all but finitely many such lines meet C in d
points by Bézout, and σ is 1-to-1 off finitely many points. So we see
that if we can compute the degree of the ramification divisor R f then
we are done.

To do this, let
E := {FY = 0}

where FY is the partial derivative. Obviously deg(E) = d − 1, and so
by Bézout,

(14.3.3) (E · C) = (d − 1)d.

Denoting by ∑′
p the sum over points where C has a vertical tangent,

and by ∑δ
j=1 the sum over nodes, we have

(E · C) = ∑
p

′
(E · C)p +

δ

∑
j=1

(E · C)pj .
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We will show

(14.3.4) R f = ∑
p

′
(E · C)p[ p̃]

where p̃ = σ−1(p) ∈ C̃. (Recall that by our choice of coordinates, a
point with vertical tangent cannot be a singular point, and so has a
unique preimage point under normalization.) Taking degrees of both
sides of (14.3.4) gives

(14.3.5) r f = ∑
p

′
(E · C)p = (E · C)−

δ

∑
j=1

(E · C)pj .

Further, we will deduce that

(14.3.6) (E · C)pj = 2 (∀j);

together with (14.3.3) and (14.3.4), this yields

r f = d(d − 1)− 2δ.

Now put this together with (14.3.2) to get

2g + 2(d − 1) = d(d − 1)− 2δ,

2g = (d − 2)(d − 1)− 2δ,

and divide the last line by 2 to get Theorem 14.3.1. It remains only to
check (14.3.4) and (14.3.6).

If C has a vertical tangent at p, then F(p) = FY(p) = 0, hence
p ∈ C ∩ E. By assumption, p is a smooth point, so that3 FX(p) ∕= 0.
By the holomorphic implicit function theorem, we can parametrize
C locally by writing x = X/Z as an implicit function of y = Y/Z,
viz.

0 = F(1, x(y), y).

Now, differentiating gives

0 =
d

dy
F(1, x(y), y) = FX(1, x(y), y) · x′(y) + FY(1, x(y), y).

3If FX(p) = 0 then FZ(p) = 0 too by the Euler formula, contradicting smoothness
at p.
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For the two functions on the right-hand side to sum to zero, they
must have the same order at y(p):

ordy(p)FY(1, x(y), y) = ordy(p)x
′(y),

in other words
(E · C)p = {ordy(p)x(y) − 1}

= {νp(x)− 1}
= {νp̃( f )− 1}.

As the only ramification points of f are (σ−1 of) vertical tangent
points,

R f := ∑
q∈C̃

(νq( f )− 1)[q] = ∑
p

′
(E · C)p[ p̃]

as claimed.
Finally, to see (14.3.6), assume for simplicity (for some j) pj =

(0, 0). The local affine equation about a node is of the form

F(1, x, y) = ax2 + 2bxy + cy2 + {higher-order terms}.

To find the tangent lines, recall that one solves

0 = ax2 + 2bxy + cy2 =
#

x y
$7

a b
b c

8

+ ,- .
B

7
x
y

8

in P1 (for their “slopes”). That the solution Q consists of two distinct
points (as pj is a node) =⇒ Q is “smooth” =⇒ det B ∕= 0 =⇒
ac − b2 ∕= 0. That there is no vertical tangent =⇒ [x : y] = [0 : 1] is
not a solution =⇒ c ∕= 0. Consider the partial

FY(1, x, y) = 2bx + 2cy + {higher-order terms}

whose vanishing defines E; evidently E can be locally parametrized
about pj by

y = y(x) = −b
c

x + {higher-order terms}.
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To compute its intersection number against C, we pull the defining
equation of C back along this parametrization and take the order at
0:

(E · C)(0,0) = ord0(F(1, x, y(x)))

= ord0

#
ax2 + 2bx · y(x) + c(y(x))2 + {higher-order terms}

$

= ord0

/
ac − b2

c
x2 + {higher-order terms}

0

= 2 ,

Q.E.D.

14.4. Beyond stereographic projection

The genus formula is very nice, but needs to pass a smell test: if
it says that a curve C ∈ P2 has genus zero normalization, then we
should be able to parametrize C by the unique genus zero Riemann
surface P1. We know that this can be done for a smooth conic and
a (singular) cubic with one node; the first new case predicted by the
formula is that of an irreducible4 quartic curve (d = 4) with 3 nodes
(δ = 3):

g =
(4 − 1)(4 − 2)

2
− 3 = 0.

Let’s give this a try. Write {pi}i=0,1,2 for the nodes, and suppose
another curve D passes through one of these: then by Prop. 12.2.5,
(C · D)pi ≥ 2. If D is a line, then it cannot pass through all 3 pi, as
then we would have

4 = deg C · deg L = (C · L) ≥
2

∑
i=0

(C · L)pi ≥ 6,

a contradiction. So the nodes are not collinear, and by a similar
argument5 if p3 is any fixed smooth point of C, then no three of
p0, p1, p2, p3 are collinear. We may therefore move C (and the pi)
by a projectivity of P2, to have p0 = [1 : 0 : 0], p1 = [0 : 1 : 0],

4We have to say C is irreducible explicitly, because the union of a smooth cubic
and a general line is a quartic with 3 nodes.
5in which the 6 gets replaced by a 5 in the above inequality
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p2 = [0 : 0 : 1], p3 = [1 : 1 : 1]. (We’ll do so for this abstract analysis
but not for the concrete example that follows.)

The general conic in P2 is of the form

aXY + bYZ + cXZ + dX2 + eY2 + f Z2 = 0.

By substitution, we find that the general conic through the above
four points is of the form

Q[a:b] = {aXY + bYZ − (a + b)XZ = 0}.

This is a 1-parameter family parametrized by [a : b] ∈ P1.
The zero-cycle (cf. Remark 12.2.3(a)) Q[a:b] · C has degree 8 by

Bézout, and is of the form 2[p0] + 2[p1] + 2[p2] + [p3] + more. This
“more” can only be one more point q[a:b] with multiplicity one, since
what is already written has degree 7 (and by construction, we don’t
have negative intersection numbers). Naturally, q could be one of
the pi: if it is p3, then this would say that Q is tangent to C there.
Define a map

σ : P1 → C

by

[a : b] +→ q[a:b] (:= Q[a:b] · C − {2[p0] + 2[p1] + 2[p2] + [p3]}).

In fact, this is a morphism of complex manifolds from P1 → P2 (I
won’t prove this carefully). Also, since C is irreducible, that σ is onto
essentially follows from the open mapping theorem and compact-
ness of P1.

We claim that σ is 1-to-1 off the singular points of C. Take q ∈ C
distinct from the pi; since no three of the pi are collinear, no four of
q, p0, p1, p2, p3 are collinear, so there exists a unique conic Q through
all five. (The uniqueness when q = p3 then essentially follows from
continuity of σ.)

14.4.1. EXAMPLE. So what does such a normalization look like?
Take the very concrete quartic curve

C = {X2Z2 + Y2Z2 + 2X2Y2 = 0}.
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Irreducibility can be checked by putting the polynomial in affine
form y2(1 + 2x2) + x2 and showing it doesn’t factor into terms of
lower degree in y. As you may check, the only singularities are
p0 = [1 : 0 : 0], p1 = [0 : 1 : 0], and p2 = [0 : 0 : 1].

Now pick p3 := [i : 1 : 1] (i =
√
−1). The general conic through

the 4 points {pi}3
i=0 is

Q[α:β] := {αXZ + βYZ = i(α + β)XY}.

Substituting this into α2 times the equation of C gives

0 = (i(α + β)XY − βYZ)2 + α2Y2Z2 + 2α2X2Y2 = · · ·

= (β2 + α2)Y2(Z − iX)

/
Z − i

2αβ + β2 − α2

β2 + α2 X
0

,

in which the last factor gives us the x
!
= X

Z
"
-coordinate of the point

q[α:β]. The y-coordinate is obtained by substituting into the equation
of Q, and we find σ([α : β]) =

V
i(2αβ + α2 − β2)(2αβ + β2 − α2) : (α2 + β2)(2αβ + α2 − β2)

: (α2 + β2)(2αβ + β2 − α2)
W

.

Or, in affine coordinates (t = β
α in particular),

σ(t) =
/
−i

1 + t2

t2 + 2t − 1
, i

1 + t2

t2 − 2t − 1

0
.

Exercises
(1) Recall the setup of Riemann-Hurwitz: C, C′ compact RS with g =

genus(C), g′ = genus(C′), f : C → C′ nonconstant holomorphic
map of degree d. Show that for any d ≥ 1, g ≥ g′. (The covering
surface “has at least as many handles”.)

(2) Let z = Z1
Z0

(where [Z0 : Z1] are the homogeneous coordinates) be
the “canonical coordinate” on P1. If a holomorphic map f : P1 →
P1 takes the form f (z) = zn + a1zn−1 + . . . + an, then (a) what is
deg( f )? (b) What can you say about the ramification divisor R f ?
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(at least, what is its degree?) (c) Use Riemann-Hurwitz to check
your answers.

(3) Let C = C/Λ where Λ = {mλ1 + nλ2 |m, n ∈ Z} is a lattice in
C. (In particular, λ1 and λ2 are independent over R.) Suppose
that α ∈ C∗ satisfies αΛ ⊆ Λ. [Remark: if α /∈ Z this places a
strong condition on Λ; we say Λ, or C, “has complex multiplication
(or CM).”] The multiplication by α induces a holomorphic map
µα : C → C, i.e. an automorphism of the RS C. (a) Show that the
ramification divisor R ∈ Div(C) for this map is zero. (b) Prove
that the degree of µα equals the index [Λ : αΛ] of the image lattice
α · Λ ⊆ Λ.

(4) Find the genus of the normalization XC of the irreducible curve C
given by taking the closure of x2 + x2y2 + y2 = 0 in P2. (First
convert to homogeneous coordinates and check for singularities.
Then apply the genus formula. This is very similar to something
above...)

(5) This problem complements (3) above, but you won’t use any-
thing from this chapter in doing it. A (holomorphic) map f :
C
Λ → C

Λ of Riemann surfaces is nothing but an analytic map
f̃ : C → C (i.e. an entire function) such that for all λ ∈ Λ, z ∈ C,

(∗) f̃ (z + λ)− f̃ (z) ∈ Λ,

i.e. z1 ≡ z2 mod Λ =⇒ f̃ (z1) ≡ f̃ (z2) mod Λ (this is just the
well-definedness condition for f ). Show that such a map is nec-
essarily affine, i.e. of the form

f̃ (z) = αz + β.

[If α other than α ∈ Z works, then we are of course in the CM
case described above. So a non-CM complex 1-torus, which is
the “generic” case, has endomorphisms of the form z +→ nz + β,
n ∈ Z, and that’s all.] Hint: consider f̃ ′(z), and use (∗).

(6) Let M denote a Riemann surface of genus 4. (a) Can M be embed-
ded as a smooth curve in P2? (b) Compute the genus of a smooth
double-cover M̃ of M branched over 6 points.
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(7) Let C be a quintic curve (d = 5) with three nodes, and no other
singularities. (a) Show that C is irreducible and find its genus.
[Hint: suppose it was reducible and apply Bézout to the various
possibilities.] (b) Show that the nodes cannot be collinear.


