
CHAPTER 15

Some applications of Bézout

We have already put Bézout’s theorem to use in proving the genus
formula (and in several interesting exercises at the end of Chapters
12 and 14). Now we shall use it to prove a general result on curves
through configurations of points, which in particular will yield a
short (and rigorous) proof of Pascal’s theorem from Chapter 1. We
shall also deduce some results on cubics will will come in handy for
studying the group law on elliptic curves.

Throughout this Chapter we shall use the following dictionary:

algebraic curve ⊂ P2 degree
defining equation

(homogeneous polynomial)

C d F ∈ Sd
3

D d G ∈ Sd
3

E e H ∈ Se
3

Recall the theorem we are wanting to apply:

Bézout. C ∩ E is 0-dimensional (consists of points) =⇒ (C · E) =

de.

Part of the content of the (equivalent) contrapositive statement is:

tuozèB. The number of points |C ∩ E| exceeds de =⇒ E and C have
a common component.

From Chapter 9, we have:

Study. E irreducible and E ⊂ C =⇒ H divides F.

Putting tuozèB and Study together gives:
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BS. E irreducible and |C ∩ E| > de =⇒ H | F.

We’ll make use of this statement below.

15.1. Cayley-Bacharach theorem

Let p1, . . . , pn ∈ P2 be distinct points, and define

Sd(p1, . . . , pn) :=

K
homogeneous polynomials (of degree d)

in [Z : X : Y] vanishing at p1, . . . , pn

L
.

15.1.1. LEMMA. Suppose E is irreducible and p1, . . . , pa ∈ E for some
a > ed, while pa+1, . . . , pn /∈ E. Then

Sd(p1, . . . , pn) = H · Sd−e(pa+1, . . . , pn).

PROOF. The inclusion of the RHS into the LHS is easy, since it
is just saying that the product of a polynomial vanishing at the last
n − a points by a polynomial vanishing at the first a points, vanishes
at all of them. So we turn to the reverse inclusion.

Assuming Sd(p1, . . . , pn) is nonzero, take a nonzero element F;
this defines a degree d curve C containing p1, . . . , pn. Clearly we
have p1, . . . , pa ∈ C ∩ E, so |C ∩ E| > ed, and by “BS”, H | F. We
can therefore write F = F0 · H with F0 ∈ Sd−e. Since F = 0 but
H ∕= 0 at pa+1, . . . , pn, F0 must vanish at these points. It follows that
F0 ∈ Sd−e(pa+1, . . . , pn) as desired. □

15.1.2. THEOREM. Let E be irreducible, |C ∩ D| = d2 with d > e,
and assume exactly1 ed of the points of C ∩ D lie on E. Then the remaining
d(d − e) points lie on a (not necessarily irreducible!) curve of degree ≤
d − e.

PROOF. Let [A:B:C] ∈ E\{(C ∩ D) ∩ E}, and set λ = F(A, B, C),
µ = −G(A, B, C). Define P := λG + µF ∈ Sd; this vanishes on C ∩ D
and at [A:B:C]. Label (C ∩ D) ∩ E =: {p1, . . . , ped}, [A:B:C] =: ped+1,

1It is enough to check, in applying this, that ed of the points (not “exactly ed of the
points”) lie on E. This is because by Bézout, more than ed of these points simply
can’t lie on E: we would then have E ⊂ C and E ⊂ D hence |C ∩ D| = ∞.
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and (C ∩ D)\{(C ∩ D)∩ E} = {ped+2, . . . , pd2+1}; set a := ed+ 1 and
n = d2 + 1.

Since a > ed, Lemma 15.1.1 tells us that Sd(p1, . . . , pd2+1) = H ·
Sd−e(ped+2, . . . , pd2+1). But then, since P ∈ Sd(p1, . . . , pd2+1), we
have P = HP0 for some P0 ∈ Sd−e(ped+2, . . . , pd2+1). This P0 defines
the required curve. □

Here is the nice application to Pascal:

15.1.3. COROLLARY. The (three) intercepts of opposite sides of a hexagon
inscribed in a conic are collinear.

PROOF. Referring to the picture

1
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we put C := L1 ∪ L3 ∪ L5, D = L2 ∪ L4 ∪ L6, and E = Q. Clearly this
means d = 3 and e = 2, and we do indeed see that de = 6 points of
C ∩ D = {p1, . . . , p6} ∪ {q1, q2, q3} lie on E. So the last three points
of C ∩ D, which are the intercepts, lie on a curve of degree d − e = 1
by the Theorem. □

15.1.4. REMARK. If one wanted instead to plug the technical gap
in the proof of Pascal suggested in Chapter 1, part of what one needs
is the statement: if p1, . . . , p8 ∈ P2 are distinct and in “general posi-
tion” in the sense that no 4 are collinear and no 7 conconic (lying on
an irreducible conic), then dim S3(p1, . . . , p8) = 2. This is proved in
Reid’s book.
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15.2. Intersections of cubics

The results of §15.1 dealt with the case where all intersections of
curves have multiplicity one (the “transversal” case), since we re-
quired |C ∩ D| = d2 = (C · D). To deal with the general case, at least
assuming E is smooth and irreducible (so that we may view it as a
Riemann surface), write

C · E := ∑
p∈E∩C

(E · C)p[p] ∈ Div(E).

If E is irreducible but singular, with a single node or cusp2 p̂, the
same definition gives a divisor C · E ∈ Div(Ẽ) (on the normalization)
provided p̂ /∈ E ∩ C.

15.2.1. THEOREM. Let C, D, E be distinct cubics, with E irreducible.
(If E is singular, assume moreover that p̂ /∈ E ∩ C, E ∩ D.) Writing by
Bézout

D · E =
9

∑
i=1

[qi] ∈ Div(Ẽ)

where the qi need not be distinct, and assuming

C · E =
8

∑
i=1

[qi] + [q] ∈ Div(Ẽ),

we have q = q9.

In the intersection multiplicity one case, the Theorem gives im-
mediately:

15.2.2. COROLLARY. Let C, D, E be distinct cubics, E irreducible. If
D ∩ E = {q1, . . . , q9} (distinct points) and C passes through q1, . . . , q8,
then it passes through q9.

Actually this is true without assuming E irreducible (provided
E doesn’t share any components with D or C), but we won’t prove
that.

2See the paragraph immediately preceding §16.1 below.
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PROOF OF THEOREM 15.2.1. First assume E is smooth. Recall
that the quotient of two homogeneous polynomials — say, F/G —
yields a meromorphic function on P2. By Example 7.3.6, since E in-
tersects D = {G = 0} only in points, we may pull this back to E:

f :=
F
G

????
E
∈ K(E)∗.

Suppose (for a contradiction) that q ∕= q9. Since C = {F = 0} and
D = {G = 0}, the divisor of f is evidently

( f ) = C · E − D · E = [q]− [q9] ∈ Div(E).

This says that f has one zero (at q) and one pole (at q9); hence, as
a holomorphic map of Riemann surfaces E → P1, f has mapping
degree 1. That is, f is 1-to-1; and since (using the open mapping
theorem) its image must be open and closed (and P1 is connected),
f is surjective. So f gives an isomorphism E ∼= P1. On the other
hand, being a smooth cubic, E has genus 1 (by the genus formula),
whereas the genus of P1 is zero — so they can’t be isomorphic for
purely topological reasons! This contradication tells us that, indeed,
our assumption q ∕= q9 was wrong, and so they are equal.

To extend this argument to the case where E is singular with ODP
p̂, first pull back F

G along the normalization σ : Ẽ → P2 (of E) to ob-
tain f ∈ K(Ẽ). We regard f as a map from Ẽ → P1. As before,
assuming q ∕= q9 leads to deg( f ) = 1. However, a different objection
to “deg( f ) = 1” will be required as there is no topological obstruc-
tion: indeed, Ẽ ∼= P1 by the genus formula (a nodal cubic has genus
zero normalization). So argue as follows: since p̂ /∈ C, D, we find
that F

G ∈ K(P2) is well-defined at p̂, so its pullback via σ cannot
“separate” the two branches of E there. That is, at the two points of
Ẽ mapping to p̂ (under σ), f will take the same value. But then, the
mapping degree of f cannot be 1.

The other possibility is that p̂ is a cusp. We may assume that p̂ =

[1 : 0 : 0] and the equation of E is of the form x3 = y2 (parametrized
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by t +→ (t2, t3)). Again we need to show that f = σ∗ F
G , if noncon-

stant, cannot have mapping degree 1. Let p̃ = σ−1( p̂), and write
R(x, y) := F(1,x,y)

G(1,x,y) −
F(1,0,0)
G(1,0,0) . Then f (t)− f (0) = (σ∗R)(t) = R(t2, t3),

and

deg( f ) = deg f−1([ f (0)])

≥ ord0(R(t2, t3))

≥ ord(0,0)(R(x, y)) · min{ord0(t2), ord0(t3)}

≥ 1 · 2 = 2. □

The first three exercises use ideas from this chapter; the remain-
ing ones make further use of divisors and intersection numbers.

Exercises
(1) Let C, D, and E be as above (defined by F = 0, G = 0, H = 0),

of respective degrees d, d, e with 3 ≤ e ≤ d. Suppose C and D
intersect in d2 distinct points, and assume that E is smooth (hence
irreducible). Show that if E passes through ed − 1 of these, it
passes through ed of them. (Imitate the argument from the proof
of Theorem 15.2.1.)

(2) (Converse of Pascal) Suppose that C := L1 ∪ L3 ∪ L5 and D :=
L2 ∪ L4 ∪ L6 are lines extending the edges of a hexagon, with
|C ∩ D| = 9. Assume the three intersection points which are not
vertices of the hexagon (i.e. the intercepts of opposite edges) are
collinear. (a) Prove that the vertices are conconic. [The conic may
be smooth or degenerate.] (b) Explain how this leads to a con-
struction of the conic through 5 points, in the spirit of Prop. 1.2.1.

(3) (Möbius’s generalization of Pascal) Show that if any 2n intercepts of
opposite sides of a (4n + 2)-gon inscribed in a conic are collinear,
then all 2n + 1 of the intercepts are collinear.3 (Notice that for
n = 1, this is indeed equivalent to Pascal.) [Hint: try n = 2

3You should make the following “genericity” assumption: if C is the union, going
around the polygon, of the odd-numbered lines, and D the union of the even-
numbered lines, then they should intersect in (2n + 1)2 distinct points.
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first, or maybe just do that case; it’s already a bit tricky. Start by
applying Theorem 15.1.2 with C and D both configurations of 5
lines, and E the conic. This produces a cubic K containing the 15
points (C ∩ D) \ (C ∩ D ∩ E). Argue that the line L containing
at least 4 of these points is a component of K, and consider the
union of E and the other component of K. Assume L does not
contain a fifth point and arrive at a contradiction.]

(4) Show that all (complex analytic) automorphisms of P2 are pro-
jectivities (hence algebraic), i.e. that Aut(P2) ∼= PGL(3, C). [Hint:
given an automorphism α, it sends an algebraic curve a priori to
an analytic one; but we know this is algebraic by Exercise (6) of
Chapter 10. By considering intersection numbers for a pair of
curves, show that lines are sent to lines. Compose α with an ap-
propriate projectivity to get the identity, using what you know
about automorphisms of P1.]

(5) (Weil reciprocity) Given a Riemann surface M and meromorphic
functions f , g ∈ K(M)∗ with disjoint divisors ( f ), (g) (i.e. the
zeroes/poles of f don’t intersect those of g), prove that

f ((g)) = g(( f )).

(For a divisor D = ∑ mi[pi], f (D) means ∏ f (pi)
mi .) [Hint: con-

sider g as a morphism M → P1, and write z for the coordinate
on P1, so that (g) = g∗(z) in the notation of Remark 14.1.3.
Write N : K∗(M) → K∗(P1) for the Norm map sending a func-
tion to the product of its values over each point of P1. Show that
f ((g)) = N f ((z)) and g(( f )) = z((N f )), thereby reducing the
proof to the case M = P1; then finish it off.]


