
CHAPTER 16

Genera of singular curves

Consider an irreducible projective algebraic curve

C ⊂ P2

of degree d, defined over C. We know how to piece the local normal-
izations about singular points together with the smooth part of C to
construct a Riemann surface C̃, together with a map

σ : C̃ → P2

with image(σ) = C. The genus formula of Chapter 14, derived
from a generic stereographic projection and the Riemann-Hurwitz
formula, said that

g(C̃) =
(d − 1)(d − 2)

2
− δ

when all singularities of C (if any) are nodes and there are δ such
points.

More generally, we would like to be able to compute the genus of
the normalization of an arbitrary irreducible curve, with singularities
of any order and type. (This is called the geometric genus of C.) It is
true that the answer is always 1

2(d − 1)(d − 2) minus contributions
from each singularity depending only on its local “type”; and there
are combinatorial formulas for those contributions in a large class of
cases (going far beyond ADE). One special case is that of an ordinary
k-tuple point (cf. §6.4), each one of which subtracts 1

2 k(k − 1) from
the geometric genus; see Exercise 6 below (or Fulton’s book on al-
gebraic curves). Our preference here, however, is for methods over
formulas, particularly as the methods allow you to treat other cases
and use what you’ve just learned.
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196 16. GENERA OF SINGULAR CURVES

In what follows I will introduce two methods. The first one com-
putes the divisor of the pullback of a meromorphic differential 1-
form on P2 to C̃ and applies Poincaré-Hopf. The second is based
on projecting C to a line and applying Riemann-Hurwitz, as in the
proof of the genus formula. Rather than stating them formally, I’ll
use both methods to treat an example which is “sufficiently general”
that you’ll be able to adapt the approaches to any other curve.

So here is the ugly curve we will study: put

F(Z, X, Y) := X3Z3 + X6 + Y5Z,

and
C := {F(Z, X, Y) = 0} ⊂ P2,

with affine form x3 + x6 + y5 = 0. This is a degree 6 (i.e. sextic)
curve; a smooth curve of this degree has genus 10. That will not be
the answer here.

One immediately obvious singularity is at (0, 0) (i.e. [1:0:0] in
projective coordinates [Z : X : Y]). The lowest-order homogeneous
term (of the affine equation, in coordinates vanishing at this point)
is x3. So [1:0:0] is a triple point, but very definitely not an ordinary
triple point of C. Ugly enough? Well, this turns out to be the only
singularity.

At the end I will mention briefly (without proof) a simple combi-
natorial method which often works when the singularities are only
at [1:0:0], [0:1:0], and [0:0:1]. It is thus less general than the formulas
alluded to above, but easy to apply, and gives a nice advertisement
for an area called toric geometry.

16.1. Method I: Poincaré-Hopf

Set ω = σ∗
#

dx
y

$
∈ K1(C̃)∗ (it will actually turn out to be in

Ω1(C̃), although this is inessential for the method). Poincaré-Hopf
tells us that deg((ω)) = 2g − 2, where g = g(C̃). So we have to
compute (ω) = ∑ mi[pi] ∈ Div(C̃). Where might these {pi} lie in
C̃? Or rather, where might the {σ(pi)} lie on C? There are four (not
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necessarily disjoint) possibilities:

(1) on the intersections of C with the x-axis, i.e. in C ∩ {Y = 0};
(2) at points where C has a vertical tangent, hence in C ∩ {FY = 0};
(3) at singularities of C, i.e. in Sing(C); and
(4) on the line at infinity, i.e. in C ∩ {Z = 0}.

Why might one expect nontrivial νp(ω) at p in one of these sets?
For (1), the denominator of dx

y is zero on the line Y = 0; while for
(2) the pullback of dx will be zero, since at such a point the curve
has no “horizontal variation” to first order. You should always be
suspicious of (3) and (4). Conversely: on the smooth affine part of C,
dx and y never blow up, and (1) and (2) are the only ways they can
develop a zero. So (1)-(4) are actually the only places where ω can
have a zero or pole.

Now we go through these 4 sets of points for the particular curve
under consideration.

(1): We look at the affine equaton and set y = 0, which yields
x3 + x6 = 0, hence x = 0, ζ6, ζ6, or −1. (Here, ζ6 = exp(π

√
−1

3 ).)
While (0, 0) is a singular point and will be dealt with below, it is
clear that dx

y |C will behave in the same way near the remaining three

points: (−1, 0), (ζ6, 0), and (ζ6, 0). We look in a neighborhood of
(−1, 0) on C. Setting χ = x + 1, the equation becomes in (χ, y):

0 = y5 + (χ − 1)3 + (χ − 1)6 = y5 − 3χ + {higher-order terms in χ}

= y5 − 3χh(χ),

where h(0) ∕= 0.1 The local normalization of C at (χ, y) = (0, 0) is
therefore t +→

#
t5, t · 5

:
3h(t5)

$
, under which dx

y = dχ
y pulls back to

d(t5)

t· 5
√

3h(t5)
= t3 · 5dt

5
√

3h(t5)
which has a zero of order 3 at t = 0. So we

conclude that
νσ−1[1:−1:0](ω) = 3,

and similarly that νσ−1[1:ζ6:0](ω) = νσ−1[1:ζ6:0](ω) = 3.

1Sometimes (though rarely) one may have to “remember” more about h in these
types of problems, but not in this example.
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(2): For vertical tangents or singularities we will have

0 = FY = 5Y4Z,

so that these must occur along the x-axis or along the line at ∞. The
intersections with the x-axis other than [1 : 0 : 0] were just dealt
with. Any nonsingular intersections with {Z = 0} will be dealt with
in step (4). So vertical tangents are subsumed under the other three
categories.

(3): At a singular point we must have 0 = FY,

0 = FX = 3X2Z3 + 6X5 = 3X2(Z3 + 2X3),

and
0 = FZ = 3X3Z2 + Y5.

We must have Z = 0 or Y = 0. If Z = 0 then the last two equations
imply X = Y = 0, a contradiction. If Y = 0 then the last equation
gives Z = 0 (no!) or X = 0; the latter works, and so [1 : 0 : 0] is the
only singular point. In local coordinates about (x, y) = (0, 0), our
curve is 0 = y5 + x3 + x6 = y5 + x3h(x) (different h(x) from above,
again h(0) ∕= 0), which is locally irreducible and has a singularity of
order 3. Under the local normalization t +→ (t5, t3 · 5

:
h(t5)), dx

y pulls

back to d(t5)

t3· 5
√

h(t5)
= t · 5dt

5
√

h(t5)
, and we conclude that

νσ−1[1:0:0](ω) = 1.

(4): C ∩ {Z = 0} is the single point [0 : 0 : 1]. We will need to
switch to affine coordinates vanishing at this point, namely u = 1

y =
Z
Y , v = x

y = X
Y (or conversely y = 1

u , x = v
u ):

u

v

x

y

P
2
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We divide Z3X3 + X6 + Y5Z = 0 by Y6, obtaining
/

Z
Y

03 /X
Y

03

+

/
X
Y

06

+
Z
Y

= 0

v6 + u3v3 + u = 0

which is a locally irreducible Weierstrass polynomial in v with (mul-
tivalued) roots of the form

v∗(u) :=
3

Y
−u3 ±

√
u6 − 4u

2
.

(Use the quadratic formula to solve for v3, then take cube root.) Sub-
stituting in t6 gives

ṽ(t6) =
3

Y
−t18 +

√
t36 − 4t6

2
=

3

Y
−t18 + t3 ·

√
t30 − 4

2

= t · 3

Y
−t15 +

√
t30 − 4

2
which is just t times some local analytic H(t) with H(0) ∕= 0. So

the normalization is t +→ (t6, t · H(t)) and dx
y =

d( v
u)

1
u

pulls back to

d
!

tH(t)
t6

"

1
t6

= t6d
#

H(t)
t5

$
= (tH′(t)− 5H(t)) dt, which has neither zero

nor pole at t = 0. Hence,

νσ−1[0:0:1](ω) = 0.

Upshot: Putting everything together, the divisor of ω on C̃ is

(ω) = [σ−1[1:0:0]] + 3[σ−1[1:ζ6:0]] + 3[σ−1[1:− 1:0]] + 3[σ−1[1:ζ6:0]].

Taking degrees on both sides (and invoking Poincaré-Hopf) gives

2g − 2 = deg((ω)) = 1 + 3 + 3 + 3 = 10,

whence the geometric genus g is 6.
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16.2. Method II: Riemann-Hurwitz

Recall that this dealt with maps of Riemann surfaces

f : M → N,

and told us that
χM = deg( f ) · χN − r f .

Here deg( f ) is the mapping degree of f (the number of points in
the preimage of a general point on N) and r f is the degree of the
ramification divisor2 R f := ∑p∈M(νp( f )− 1)[p].

Now let q ∈ P2\C, M = C̃, N = P1, π =stereographic projection
(P2\{q}) → P1 through q; and take

f : C̃ → P1

to be given by f := π ◦ σ. Usually it is easiest to take [1 : 0 : 0],
[0 : 1 : 0], or [0 : 0 : 1] as q. In our case the only one of these not on C
is [0 : 1 : 0]. So our projection looks like

P
2

π
(forgets x−coord.)

[0:1:0]

C

and the mapping degree is the number of intersection points of {y =

y0} and {x3 + x6 + y5 = 0} for general y0 — i.e. deg( f ) = 6. Obvi-
ously χP1 = 2 − 2 · 0 = 2, so we have

2 − 2g = χC̃ = 6 · 2 − r f = 12 − r f

=⇒ g = 1
2r f − 5.

2Remember that about any point p ∈ M and its image f (p) ∈ N, one has local
holomorphic coodinates z resp. w (with z(p) = 0 resp. w( f (p)) = 0), in which f
takes the form z (→ zνp( f ) = w.
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So we will have to compute R f = ∑ mi[pi] (or at least r f ) and the first
issue to resolve is where the σ(pi) can lie on C:

(1) points having horizontal tangents (subset of {F = 0}∩ {FX = 0});
(2) singular points (FX = FY = FZ = 0) — i.e. [1 : 0 : 0] for our
example; and
(3) L∞ ∩ C — i.e. [0 : 0 : 1] in our example.

(1): 0 = FX = 3X2(Z3 + 2X3) has solutions other than X = 0,
which corresponds to the singular point. Namely, writing x = X

Z

we get x3 + 1
2 = 0 hence x = −1

3√2
, ζ6

3√2
, ζ6

3√2
. Plugging this into the

affine equation of C yields y5 = 1
4 hence y = 1

5√4
, ζ5

5√4
, ζ2

5
5√4

, ζ3
5

5√4
, ζ4

5
5√4

.
These are independent of the choice amongst the 3 values for x, and
so we get 5 · 3 = 15 ramification points. As you may check, the
intersections between F = 0 and FX = 0 at these points are all of first
order, hence correspond to ramifications of order 2 and so make a
contribution of νp( f )− 1 = 2 − 1 = 1 each to r f .

(2): Near (x, y) = (0, 0), the composition

t σ+−→ (t5, t3h(t)) π+−→ t3h(t)

has νp( f ) = 3 hence contributes 2 to r f .

(3): Near (u, v) = (0, 0),

t σ+−→ (t6, tH(t))+ ,- .
u,v

π+−→ t6.

This is because π is supposed to take the y-coordinate, which is 1
u

here; but we have to compute the image in a holomorphic coordinate
vanishing at the image of p = [0 : 0 : 1]. So in fact u is the correct
variable, and the map indeed has νp( f ) = 6 and contributes 5 to r f .

Conclusion: r f = 15 · 1 + 2 + 5 = 22

=⇒ g =
22
2

− 5 = 6,

confirming the previous computation.
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16.3. A teaser on toric geometry

Back in §2.1, we discussed how Pn compactifies Cn for each n;
a bit more generally, we can ask about compactifications of the “al-
gebraic torus” (C∗)n.3 For n = 1, P1 is still the only answer, but
already for n = 2, infinitely many possibilities arise simply from
drawing compact, convex polygons ∆ ⊂ R2 with vertices in Z2. I
won’t carefully define the resulting (compact) toric surfaces P∆, but
here are some of their properties:

• P∆ contains C∗ × C∗ (with coords. (x, y)) as a dense open subset;
• the action (by coordinatewise multiplication) of C∗ × C∗ on itself

extends to an action on P∆;
• the “boundary” P∆ \ (C∗×C∗) is a chain of P1’s, connected “head

to tail”, in 1-to-1 correspondence with the edges of ∆;
• if the shortest integer vector along an edge is (a, b), then xayb is a

coordinate on the corresponding P1;
• there is a bijection between vertices of the polygon and fixed points

of the torus action (which is also where the P1’s meet, and are the
only possible singularities4 of P∆);

. . . and here are some examples:

• if ∆ is any rectangle with vertical/horizontal edges, then P∆
∼=

P1 × P1; and
• if ∆ is a triangle with vertices (0, 0), (d, 0), and (0, d) (for some

d ∈ Z>0), then P∆
∼= P2.

The main point is that, given a “toric” curve C∗ ⊂ C∗ × C∗ defined
by a polynomial equation F(x, y) = 0, we can consider its closure
not just in P2 but in any P∆. Why would we want to do this, and
which ∆ should we choose?

3We require that they be normal, i.e. have local coordinate rings integrally closed
in their fraction fields, but don’t insist on smoothness.
4whatever “singular” means, since I haven’t presented P∆ via equations — though
this can be done, inside some larger PN . If the two integral “edge vectors” ema-
nating from a vertex are (ai, bi), then the point is smooth iff |a1b2 − a2b1| = 1.
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Suppose that the closure C ⊂ P2 is smooth outside of [1:0:0],
[0:1:0], and [0:0:1]. Then it may be that singularities at these points
are a result of P2 being a “non-optimal choice” for compactifying C∗.
In that case, we should let the polynomial F = ∑(m,n)∈M cm,nxmyn

guide our choice of ∆. Here5 M ⊂ Z2 is some finite subset (on which
cm,n ∕= 0), and we take ∆ to be its convex hull, called the Newton
polygon6 of F. With this choice, let C′ denote the closure of C∗ in P∆.

Now decorate the integer points (m, n) of the Newton polygon ∆
with the coefficients of xmyn in F (some of which may be zero). For
each edge of ∆, define an edge polynomial by writing a0 + a1z + · · ·+
amzm with a0, a1, . . . , am the coefficients along that edge, from vertex
to vertex (in either order).

16.3.1. DEF INITION. F is nondegenerate if no edge polynomial has
a repeated root and Fx = Fy = F = 0 has no solutions in C∗ × C∗.

The main point, which we can now state (but not prove), is:

16.3.2. PROPOSITION. If C∗ is defined by a nondegenerate polynomial,
then C′ is smooth, and its genus is the number of integer points in the
interior of ∆:

g = |Z2 ∩ (∆ \ ∂∆)|.

In this case, C′ normalizes C, and so g is the geometric genus of
C. Why should you believe this?

16.3.3. EXAMPLE. Suppose F is nondegenerate of degree d, with
Newton polytope ∆ the triangle with vertices (0, 0), (d, 0), (0, d).
Then C is smooth of genus 1

2(d − 1)(d − 2) by the genus formula,
which also happens to be the number of integer points in the interior
of ∆. We will later use this fact to produce an explicit basis for Ω1(C),
and it is this construction which generalizes to prove Prop. 16.3.2.

5Of course, we have M ⊂ Z2
≥0 for F a polynomial; but in the toric world one tends

to work with Laurent polynomials (allowing negative exponents), as C∗ is unaf-
fected by multiplying its equation by negative (or positive) powers of x and y.
6This is different from the version considered in Exercise (3) of Chapter 10, which
was noncompact.
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If if you like this combinatorial side of algebraic geometry, I highly
recommend Fulton’s book on toric varieties.

Exercises
(1) Find the geometric genus of the curve C ⊂ P2 with affine equa-

tion x3 + y2 + y2x3 − 2
5 y5 = 0. Do this in 2 different ways: (a)

by using an appropriate projection, computing the degree of the
ramification divisor, and applying Riemann-Hurwitz; (b) by com-
puting the divisor of the pull-back of a meromorphic 1-form on
the normalization and applying Poincaré-Hopf (try it with dy

x ).7

(2) Consider the curve C = {YX2Z2 − Y3X2 + Z5 = 0} ⊂ P2. (a)
Find all singularities of C. (b) What are their orders and types?
(c) Compute the tangent lines and their multiplicities. (d) Use
Method I or II to find the geometric genus (you may check the
answer with a Newton polygon).

(3) Find the geometric genus of C = {Y7 − X5Z2 + X5Y2 = 0} ⊂ P2

by computing the divisor of the pullback of dy
x (i.e. by Method I).

(4) Use the Newton polygon to give a third “proof” that the geomet-
ric genus of the curve defined by x3 + x6 + y5 is 6.

(5) Find the genus of the curve y2 − ∏d
i=1(x − αi) for each d > 0 (al-

ready seen in Example 14.2.3 for even d) using Newton polygons.
(6) Show that if p is an ordinary k-tuple point (with no vertical tan-

gents) on an irreducible curve C = {F = 0}, and E = {FY = 0},
then we have (E · C)p = k(k − 1). [Hint: if a polynomial f in one
variable has only simple roots, then it shares no roots with f ′.]
Modify the proof of the genus formula to verify that each such
point subtracts 1

2 k(k − 1) from the geometric genus of C.

7Hint: to do the local normalizations, first make sure you are dealing with an ir-
reducible Weierstass polynomial f (x, y) = 0 – you may have to change variable,
swap coordinates, divide out by a unit (which can reduce the degree of the equa-
tion!), factor into irreducibles, whatever. If you can’t find a multivalued solution
y(x) by taking roots, using quadratic equation, and so on, you can always use
power series. If f (x, y) is an irreducible Weierstrass polynomial of degree k in y,
then try substituting in tk for x: write 0 = f (tk, y) and solve for y as a power-series
in t, call this G(t). Then the local normalization is t (→ (tk, G(t)).


