
CHAPTER 17

The singular cubic

Recall that a singular cubic curve1 D ⊂ P2 is normalized via
stereographic projection through its singular point p̂; that is, we get
a normalization morphism

σ : P1 → P2

with image D. In particular, all singular cubics have normalization
of genus zero. Moreover, they are all projectively equivalent to one
of two examples.

The nodal cubic. Recall that a “node” is just an ordinary double
point. Let D = {Y2Z = X2(Z − X)}; the affine equation is y2 =

x2(1 − x) and a schematic picture is

p

where I have denoted points with real coordinates in blue and points
with only x-coordinate real in red. (How these sit inside the full set of

1D is for “degenerate”!
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208 17. THE SINGULAR CUBIC

complex points will be pictured below; the dotted stuff will connect
up.) By Exercise 5 of Chapter 3, this is parametrized by

ϕ : P1/{0, ∞}
∼=−→ D

t +−→
/

−4t
(1 − t)2 ,

−t(1 + t)
(1 − t)3

0
=: (x(t), y(t)).

The “P1/{0, ∞}” means the Riemann sphere with the top and bot-
tom points identified.2

The cuspidal cubic. Take D = {Y2Z = X3}, with affine equation
y2 = x3, and schematic picture

p

where I have only drawn real points. To do stereographic projection
through the cusp (0, 0), write y = 1

t x and substitute to get 1
t2 x2 = x3

=⇒ x = 1
t2 . Hence we get a normalization

ϕ : P1 → D

defined by

t +→
Z

1 :
1
t2 :

1
t3

[
.

2Sending [T0 : T1] (−→ [(T0 − T1)
3 : −4T1T0(T0 − T1) : −T1T0(T0 + T1)] homoge-

nizes the formula for ϕ, and then it is clear that ϕ(1) = ϕ([1 : 1]) = [0 : 0 : 1].
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One of our overarching themes in the next few chapters will be
the study of algebro-geometrically defined group laws on cubics. In
this chapter, we focus on the above two singular examples, as the
smooth case is more difficult. For the nodal cubic, the law will turn
out to be equivalent (via ϕ) to multiplication on C∗ = P1\{0, ∞};
while in the cuspidal case, it identifies with addition on C = P1\{∞}.
In both cases, these sets are the preimages under normalization of the
smooth points of D, which is where the group laws will be defined.

In the course of studying such laws as well as “addition theo-
rems” on these curves, we will pull back rational functions on P2

(quotients of homogeneous polynomials of equal degree, or equiva-
lently elements of C(x, y)) to get meromorphic functions on P1 (the
normalization of our curve). So in illustrating the simplicity of the
group law, hence

Principle 1: Singularities make curves of a given degree more trivial
and easier to study,

we will be seeing a concrete example of the following

Principle 2: Given C ⊂ P2 an irreducible algebraic curve with nor-
malization σ : C̃ → P2, every f ∈ K(C̃) is of the form σ∗F, F ∈ C(x, y).

In other words, writing C0 := C ∩ (P2\{Z = 0}) for the affine part
of C and gC0(x, y) for its defining equation, if we define

C[C0] :=
C[x, y]
(gC0)

, C(C) := fraction field of C[C0]

∼=
K

σ∗F

?????
F ∈ C(x, y)
F ∕≡ ∞ on C

L
,

then Principle 2 says that

K(C̃) ∼= C(C).
analytic algebraic

Since C was projective, C̃ is compact, and that turns out to be of
fundamental importance: e.g., C[C0] is only a subring of, rather than
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equal to, the ring of holomorphic functions on (the desingularization
of) C0. But the holomorphic functions not in C[C0] have essential
singularities at infinity so aren’t in K(C̃).

Before continuing on, we should address one point: why should
the only possible singularities of an irreducible cubic C be an ordi-
nary double point (node) or cusp, and why must it have only one?
First of all, if it had two singular points, then we could take a line L
through those two points. Both intersection multiplicities (of C with
L at these two points) would have to be ≥ 2, and so (C · L) ≥ 4 in
violation of Bézout. (See what a useful theorem this is?) So C can
only have one singular point, and as its equation is of degree 3 that
point can only be of order 2 or 3. If it is of order 3, then by Exercise 5
of Chapter 6, C is a union of 3 lines, contradicting irreducibility.

Finally, the local equation about a non-ordinary double point of
C can only be of the form x2 + f3(x, y) = 0, with f3 homogeneous
of degree 3. An explicit local analytic transformation puts this in the
form (x̃)2 + (ỹ)3 = 0. So it is a cusp. Alternately, anything which
looks like x2 + yn = 0 has intersection multiplicity n with the line
x = 0, again violating Bézout (in the context of our cubic curve) if
n > 3.

17.1. Warm-up: Functions on a nonsingular conic

Our smooth conic is named C. Any F ∈ K(C) can be viewed as a
map C → P1. Composing this with the stereographically produced

normalization σ : P1 ∼=→ C, yields

P1
∼=
σ
!!

σ∗F

++
C

F
!! P1,

that is, a meromorphic function on P1. Since K(P1) = C(t) (with
t := T1/T0), σ∗F must be of the form

g(t)
h(t)

=
G(T0, T1)

H(T0, T1)
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where g, h, G, H are polynomials and G, H are homogeneous of the
same degree. By the fundamental theorem of algebra, we can write
this as

γ · TN
0

∏i(T1 − αiT0)
mi

∏j(T1 − β jT0)
nj

,

for some γ, αi, β j ∈ C. As deg G = deg H =⇒ N + ∑ mi − ∑ nj = 0,
the expression simplifies to

γ
∏(t − αi)

mi

∏(t − β j)
nj

(= (σ∗F)(t)).

Note that

(17.1.1) (σ∗F)(∞) ∕= 0, ∞ ⇐⇒ ∑ mi = ∑ nj.

17.2. Functions on a singular cubic (nodal case)

Let F : D → P1 be

(17.2.1)
the restriction to D of a rational function on P2

which is well-defined and ∕= 0, ∞
at the singular point p̂ ∈ D.

Since the normalization P1 → D sends 0, ∞ +→ p̂ but is otherwise
1-to-1, we get

!
P1/{0, ∞}

" ϕ

∼=
!!

ϕ∗F

,,D F !! P1

with F(0) = F(∞) ∈ C∗. Henceforth we shall, by abuse of notation,
refer to this composition as F.

Thinking of F as a meromorphic function on P1, (17.1.1) applies
and we get

F(t) = γ
∏(t − αi)

mi

∏(t − β j)
nj

with ∑ mi = ∑ nj.

Furthermore,

γ = F(∞) = F(0) = γ
∏ α

mi
i

∏ β
nj
j
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so that

(17.2.2) ∏ α
mi
i = ∏ β

nj
j ,

relating the t-coordinates of the zeroes and poles of F.
Now introduce the multivalued function

u :=
ˆ ∗

1

dt
t
= log(t)

on P1, which takes well-defined values in C/2π
√
−1Z. We can re-

state (17.2.2) in terms of u: viz.,

∑
p∈D

νp(F) · u(p) ≡ 0 mod 2π
√
−1Z.

This leads to Abel’s theorem for the singular cubic. To state it, recall that
divisors on a complex 1-manifold are formal sums of points with
integer coefficients; a divisor is effective if none of those coefficients
are negative.

17.2.3. PROPOSITION. Given P ,Z ∈ Div(D\ p̂) effective divisors of
the same degree,

ˆ Z

P

dt
t
≡ 0 mod 2π

√
−1Z ⇐⇒

P = poles
Z = zeroes

L
of some F as in (17.2.1).

Explicitly, if P = ∑ nj[β j] and Z = ∑ mi[αi] are of the same de-
gree (d = ∑ nj = ∑ mi), then we may write

Z − P = ∑d
k=1([zk]− [pk]),

and then
´ Z
P := ∑

´ zk
pk

for some choice of paths from pk to zk. Also, in
the statement “poles” and “zeroes” are as usual meant with multi-
plicity. This is a first “baby” case of a general statement for algebraic
curves (Abel’s theorem) connecting integrals of 1-forms to the ques-
tion of when a divisor is the divisor of a meromorphic function.
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17.3. Group law on the nodal cubic

Fix a normalization3

ϕ :
#

P1/{0, ∞}
$ ∼=−→ D

t +−→ (x(t), y(t))

1 +−→ ϕ(1) =: e.

Let p, q ∈ D be arbitrary nonsingular points, and Lpq be the line
through p and q. (If they are the same, then take L to be the tangent
line TpD.) By Bézout, (Lpq · D) = 3 and so Lpq meets D in a third
point which we call p ∗ q. More precisely, everything is counted with
multiplicity (p ∗ q need not be distinct from p or q) so we really mean

[p ∗ q] := Lpq · D − [p]− [q].

Now let L′ be the line through p ∗ q and e (or TeD if they coincide),
and put

[p + q] := L′ · D − [p ∗ q]− [e].

That is, p + q is the “extra” intersection point of this line with D
guaranteed by Bézout. Here’s a useful picture of the construction:

p 0 8,

p

e p

q

p+q

p*q

0

t(p+q)=t(p)t(q)

t(p)

t(q)

t(p*q)=1/(t(p)t(q))

1=t(e)

8

Now writing fL for the equation of a line L, observe that

F :=
fLpq

fL′

????
D

: D −→ P1

3In homogeneous coordinates, we will write ϕ(t) = [Z(t) : X(t) : Y(t)].
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satisfies (17.2.1). In terms of the t-coordinate on P1, i.e. pulling F
back along ϕ, we must have:

F(t) = γ
(t − t(p))(t − t(q))(t − t(p ∗ q))
(t − t(p + q))(t − 1)(t − t(p ∗ q))

= γ
(t − t(p))(t − t(q))
(t − t(p + q))(t − 1)

.

But since F(0) = F(∞), by (17.2.2)

∏{locations of zeroes} = ∏{locations of poles}

=⇒ t(p) · t(q) = t(p + q) · t(e)+,-.
1

= t(p + q).

This identifies the group law (multiplication) on C∗ = P1\{0, ∞}
with the one just defined on D\ p̂. Alternately, taking log gives

u(p) + u(q) ≡ u(p + q) mod 2π
√
−1Z,

identifying addition on D\ p̂ with addition in C/2π
√
−1Z. This may

be rewritten

(17.3.1)
ˆ t(p)

1

dt
t
+

ˆ t(q)

1

dt
t

≡
ˆ t(p+q)

1

dt
t

mod 2π
√
−1Z.

17.4. Addition theorems for the nodal cubic

Let’s unwind the “equivalence of group laws” in the nodal cubic
example from the beginning of the chapter. Noting that e := ϕ(1) =
[0 : 0 : 1], here is a picture of how the group law works:

p

e

p*q

p+q

x
=

co
n
st.

q
p
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In particular, the x-coordinates of p + q and p ∗ q are the same, while
the y-coordinates are ± of each other.

Just to clarify the topology of the situation, here is what the pro-
jection of the normalization of D onto the x-axis looks like:

P
1

8

10

γ

1

−1

0

8

"schematic" picture topological picture

(real axis in bold)

x

0

8

−1
1

t−values

x−values

γ

It is a 2-sheeted cover with 2 branch points, with the closed path γ

indicating the “equator” (or unit circle |t| = 1) on the upper P1 (i.e.
D̃).

Now we get to work. Start by “inverting” the equivalence t(p) ·
t(q) = t(p + q):

ϕ(t1)+ ,- .
p

+ ϕ(t2)+ ,- .
q

= ϕ(t1 · t2)+ ,- .
p+q

.

Since p, q, and p ∗ q are collinear by construction,

0 = det

%

&'
Z(p) Z(q) Z(p ∗ q)
X(p) X(q) X(p ∗ q)
Y(p) Y(q) Y(p ∗ q)

(

)* .

Assuming none of them is e, Z(p)Z(q)Z(p ∗ q) ∕= 0 and we get the
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1st addition theorem:

0 = det

%

&'
1 1 1

x(t1) x(t2) x(t1 · t2)

y(t1) y(t2) −y(t1 · t2)

(

)* .

This allows you to compute x(t1 · t2) from x(t1) and x(t2), using the
equation of D to write y(t) = ±x(t)

:
1 − x(t).

Next,

ϕ∗
/

dx
y

????
D

0
=

d(x(t))
y(t)

= · · · [use Exercise 4 from Ch. 13] · · · = dt
t

,

while dx
y

???
D
= dx

±x
√

1−x
; so (17.3.1) may be expressed

ˆ x(p)

x(e)(=∞)

dx
x
√

1 − x
+

ˆ x(q)

x(e)

dx
x
√

1 − x
≡
ˆ x(p+q)

x(e)

dx
x
√

1 − x
.

(Note that 2π
√
−1 =

¸

|t|=1
dt
t =

´

γ
dx
y . Going modulo its integer

multiples, which is what “≡” means here, is necessary not to have
the equation’s correctness depend upon the choice of paths from ∞
to x(p), to x(q), and to x(p + q).) Solving

det

%

&'
1 1 1

x(p) x(q) x(p + q)
x(p)

(
1 − x(p) x(q)

(
1 − x(q) −x(p + q)

(
1 − x(p + q)

)

*+ = 0

for x(p + q) yields

x(p + q) =
−x(p)x(q)

#:
1 − x(p) +

:
1 − x(q)

$2 .

Forgetting the association with p, q, p + q ∈ D we get the

2nd addition theorem: Modulo 2π
√
−1Z,

ˆ x1

∞

dx
x
√

1 − x
+

ˆ x2

∞

dx
x
√

1 − x
≡
ˆ

−x1x2
(
√

1−x1+
√

1−x2)
2

∞

dx
x
√

1 − x
.

Note that
´ x

∞
dx

x
√

1−x
= log

#√
1−x−1√
1−x+1

$
by explicit computation of the

integral. (One way to view this function is log(t) (= u) viewed as
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a multivalued function of x.) So we have discovered a functional
equation for log

#√
1−x−1√
1−x+1

$
, which is ugly to check by hand.

One aspect of the game we have just played here is: start with a
“natural” choice of differential 1-form on the curve (if possible, one
which is smooth away from any singularities of the curve). In the
above, this was dx

y |D. You can think of this as a multivalued 1-form
on the x-axis, and then D is the “existence domain of the 1-form”
over P1

x. Then you integrate this 1-form, which gives a transcenden-
tal function which is multivalued even on D (you have to go to its
universal cover to make it well-defined), and try to produce a func-
tional equation for it (as a function of x). In the last section we’ll
summarize this story for a couple of other curves.

17.5. Other addition theorems (conic, cuspidal cubic)

Consider the example C = {y2 + x2 = 1}, parametrized by P1

via

t
ϕ+−→

/
−2t

t2 + 1
,

t2 − 1
t2 + 1

0

as in §3.3. We compute

ϕ∗
/

dx
y

????
C

0
=

2dt
t2 + 1

= 2d(arctan(t)),

dx
y

????
C
=

dx√
1 − x2

= d(arcsin(x)).

On the universal cover of P1
x\{±1} let θ = arcsin(x) (starting at x =

0 ↔ t = 0 ↔ θ = 0).4 Its role is similar to that of u = log t above,
as the integral of our chosen differential 1-form on the curve; θ takes
well-defined values in C/2πZ. Writing x(θ1) =: x1, x(θ2) =: x2,

4Note: t (→ −2t
t2+1 = x is a degree-2 map (from C to the x-axis) with ramification

points t = ±1 over x = ±1. On the complements of these points, we have a 2-to-1
map C∗ → C∗. The universal cover of C∗ is C, and so we have maps C → C∗

t → C∗
x

sending θ to t to x. So our setup encodes the relation −2 tan θ
2

(tan θ
2 )

2+1
= x(t(θ)) = x(θ) =

sin(θ).
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x(θ1 + θ2) =: x12, the standard trigonometry relations give

x12 = x1

9
1 − x2

2 + x2

9
1 − x2

1.

The “second addition formula” for the conic then reads
ˆ x1

0

dx√
1 − x2

+

ˆ x2

0

dx√
1 − x2

≡
ˆ x12

0

dx√
1 − x2

mod 2πZ,

which is a functional equation for arcsin. More simply put, it is just
the inverse of the trigonometric identity.

Next, look back to the cuspidal example from the beginning of
the chapter. We have

ϕ∗
/

dx
y

????
D

0
=

d(x(t))
y(t)

=
d
#

1
t2

$

1
t3

= −2dt,

while
dx
y

????
D
=

dx

x
3
2

.

(Note that this time, the integral of dx
y |D is just −2t and is not multi-

valued on D.) Clearly if t12 = t1 + t2, then
ˆ t1

0
dt +

ˆ t2

0
dt =

ˆ t12

0
dt

=⇒
ˆ 1

t21
(=x(t1))

∞

dx

x
3
2
+

ˆ 1
t22
(=x(t2))

∞

dx

x
3
2
=

ˆ 1
t212

(=x(t1+t2))

∞

dx

x
3
2

.

So we get a functional equation for 1√
x , which is unfortunately rather

stupid: it says
1

#
1
t2
1

$ 1
2
+

1
#

1
t2
2

$ 1
2
=

1
#

1
(t1+t2)2

$ 1
2

.

In an exercise below, you will show a less trivial addition theorem
for the cuspidal cubic, to the effect that

P, Q, R ∈ (D\ p̂) are collinear ⇐⇒ t(P) + t(Q) + t(R) = 0.
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Exercises
(1) Consider the cuspidal cubic curve D = {Y2Z = X3} ⊆ P2 and

normalize it as above, with ϕ : P1 → D given by t +→ [1 : 1
t2 :

1
t3 ] = [Z : X : Y]. (The singular point is p̂ = [1 : 0 : 0].) Prove
directly that the group law given by addition on (P1\{∞}) ∼= C

(namely, t1, t2 +→ t1 + t2) corresponds to the following process on
(D\{ p̂}): take the line L through ϕ(t1) and ϕ(t2), then a line L′

through the third intersection point ϕ(t1) ∗ ϕ(t2) (of L with D)
and the “neutral” point [0 : 0 : 1], and finally locate the third
intersection point of this L′ with D to get “ϕ(t1) + ϕ(t2)” (also
as above, for the nodal cubic). Do this simply by showing that
P, Q, R ∈ (D\{ p̂}) are collinear if and only if t(P) + t(Q) + t(R) =
0. (Here P, Q, R are distinct.) [Hint: use the determinant of the
matrix %

&'
a3 a 1
b3 b 1
c3 c 1

(

)* ,

and rewrite [1 : 1
t2 : 1

t3 ] = [t3 : t : 1].]
(2) Geometrically define a “group law” on the conic C = {x2 + y2 =

1} minus two points (which ones?) that matches addition in θ

(as in the beginning of §17.5). [Hint: add a line (which line?) and
treat it as a cubic.]

(3) Let d be a squarefree positive integer. The units Z[
√

d]∗ ⊂ Z[
√

d]
are the elements a + b

√
d with norm a2 − db2 = ±1. (Assume for

simplicity that −1 does not occur, e.g. d = 3, 6, 7, 11, . . ..) By
adding the line at infinity to

C = {x2 − dy2 = 1},

and taking e := (1, 0), define a group law on this affine curve.
Show that the map Z[

√
d]∗ → C(Z) (integer points) defined by

a + b
√

d +→ (a, b) is an isomorphism of groups.5

5It turns out that the group Z[
√

d]∗ always is isomorphic to Z ×Z2, with elements
of the form ±uℓ for some “fundamental unit” u. By calculating u, you can thus find
all integer points on the curve – that is, all integer solutions to Pell’s equation.
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(4) Show that the integer points on the curves x2 − 5y2 = 4 and x2 −
5y2 = −4 have y-coordinates the Fibonacci numbers (up to sign).
You may assume that Z[ 1+

√
5

2 ]∗ = {±uℓ | ℓ ∈ Z} with u =
1+

√
5

2 , and sending a+b
√

5
2 +→ (a, b) covers all integer points of

both curves. [Hint: writing uℓ = xℓ+yℓ
√

5
2 , what is yℓ−2 + yℓ−1?]

(5) (a) Check explicitly that e is the identity of the group law on D \ p̂
in §17.3. [Note: here e ∈ D \ p̂ is arbitrary.] (b) Verify that, with
D (= {Y2Z = X2(Z − X)}) and e (= [0:0:1]) as in §17.4, p ∗ q is
the inverse of p + q in the group law.

(6) Check the computation of x(p + q) just before the 2nd addition
theorem in §17.4.

(7) Let C be a quartic with three nodes p0, p1, p2. (a) Geometrically
define a group law on C \ {p0} (or rather, its normalization).
[Hint: use conics, not lines.] (b) In Example 14.4.1, replace t by a
different coordinate on P1 to make your law correspond to mul-
tiplication (in C∗).


