CHAPTER 18

Putting a nonsingular cubic in standard form

An irreducible algebraic curve $E \subset \mathbb{P}^{2}$ is an elliptic curve if the genus of its normalization \tilde{E} is 1 (topologically it looks like a donut). By the genus formula, all smooth cubic curves are elliptic. In the next two chapters we will show not only that such a curve is isomorphic to \mathbb{C} / Λ for some lattice Λ, but will get a description of Λ which shows its dependence on E. This is important, since for two different lattices $\Lambda=\mathbb{Z}\langle\alpha, \beta\rangle$ and $\Lambda^{\prime}=\mathbb{Z}\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle$, the complex 1-tori \mathbb{C} / Λ and $\mathbb{C} / \Lambda^{\prime}$ need not be isomorphic as Riemann surfaces. (More precisely, they are isomorphic if and only if $[\alpha: \beta]$ is carried to $\left[\alpha^{\prime}: \beta^{\prime}\right]$ by an integral projectivity, i.e. a transformation of \mathbb{P}^{1} induced by $A \in$ $P S L_{2}(\mathbb{Z})$.)

Even more significant is how we do this: by putting E in Weierstrass form, integrating a holomorphic form on it to get a map to a complex torus, and showing that the Weierstrass \wp-function and its derivative invert this map. To put E in this form, a choice of flex is required. What is that?

18.1. Flexes

Let $C=\{F(Z, X, Y)=0\} \subset \mathbb{P}^{2}$ be an irreducible algebraic curve of degree $d \geq 3$. One way of thinking of the tangent line at a nonsingular point $p \in C$ is as the unique line satisfying $\left(C \cdot T_{p} C\right)_{p} \geq 2$.
18.1.1. Definition. A smooth point $p \in C$ is called a flex if the intersection multiplicity

$$
\left(C \cdot T_{p} C\right)_{p} \geq 3
$$

Intuitively these are the inflection points of C, and can be seen to correspond to cusps of the dual curve \check{C} (see §4.4). Since \check{C} has finitely many singularities, this gives one proof that there are finitely many flexes; we will however take a different approach.

Denoting partial derivatives by subscript, e.g. $F_{Z X}:=\frac{\partial^{2} F}{\partial Z \partial X}$, the Hessian of F is the polynomial matrix

$$
\operatorname{Hess}_{F}=\left(\begin{array}{ccc}
F_{Z Z} & F_{Z X} & F_{Z Y} \\
F_{X Z} & F_{X X} & F_{X Y} \\
F_{Y Z} & F_{Y X} & F_{Y Y}
\end{array}\right) .
$$

Its determinant

$$
H:=\operatorname{det}\left(\operatorname{Hess}_{F}\right)
$$

is clearly a homogeneous polynomial of degree $3(d-2)$. Call $\mathcal{H}_{C}:=$ $\{H(Z, X, Y)=0\} \subset \mathbb{P}^{2}$ the Hessian curve associated to C.
18.1.2. LEMMA. Let $p \in C$ be a smooth point. Then p is a flex \Longleftrightarrow $p \in \mathcal{H}_{C}$.

Proof. Since intersection numbers are invariant under projectivities, we may assume $p=[1: 0: 0], T_{p} C=\{Y=0\}$. In affine coordinates, writing $f(x, y):=F(1, x, y)$, this means that the curve $\{f(x, y)=0\} \subset \mathbb{C}^{2}$ contains $(0,0)$ and is tangent to $\{y=0\}$. So $f(0,0)=0$ and $\left(f_{x}(0,0), f_{y}(0,0)\right)=(0, \lambda)$ where $\lambda \neq 0$, so that

$$
f(x, y)=\lambda y+\left(a x^{2}+2 b x y+c y^{2}\right)+\text { higher-order terms }
$$

Parametrizing $T_{p} C$ by $t \mapsto(t, 0)$, we have

$$
\left(C \cdot T_{p} C\right)_{p}=\operatorname{ord}_{0}(f(t, 0))=\operatorname{ord}_{0}\left(a t^{2}+\text { h.o.t. }\right),
$$

which is ≥ 3 (yielding a flex) if and only if $a=0$.
Now the above form of f implies

$$
F(Z, X, Y)=\lambda Y Z^{d-1}+\left(a X^{2}+2 b X Y+c Y^{2}\right) Z^{d-2}+\cdots
$$

so that

$$
\operatorname{Hess}_{F}(1,0,0)=\left(\begin{array}{ccc}
0 & 0 & (d-1) \lambda \\
0 & 2 a & 2 b \\
(d-1) \lambda & 2 b & 2 c
\end{array}\right)
$$

Taking the determinant,

$$
H(p)=\operatorname{det}\left(\operatorname{Hess}_{F}(p)\right)=-2(d-1)^{2} \lambda^{2} a
$$

This is clearly zero (i.e. $p \in \mathcal{H}_{C}$) if and only if $a=0$.
Now Bezout guarantees intersections of C and \mathcal{H}_{C}. If C is singular then these might all be at singular points, so that there may be no flexes (though this isn't typical: see the exercises). On the other hand, if C is smooth then by Lemma 18.1.2 we do have flexes. Refining this observation:
18.1.3. Proposition. On a nonsingular curve C of degree $d \geq 3$, there exists at least one and at most $3 d(d-2)$ flexes.

Proof. By Bezout,

$$
\sum_{p \in C \cap \mathcal{H}_{C}}\left(C \cdot \mathcal{H}_{C}\right)_{p}=\left(C \cdot \mathcal{H}_{C}\right)=\operatorname{deg}(C) \cdot \operatorname{deg}\left(\mathcal{H}_{C}\right)=d \cdot 3(d-2)
$$

So the number of points in $C \cap \mathcal{H}_{C}$ is between 1 and $3 d(d-2)$, all points are smooth points, and we apply Lemma 18.1.2.
18.1.4. Remark. Since Hess_{F} is just the multivariable derivative (Jacobian matrix) of $\mathcal{D}_{C}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ (§4.4), the intersections of C and \mathcal{H}_{C} may be viewed as degeneracies of the map $\left.\mathcal{D}_{C}\right|_{C}: C \rightarrow \check{C}$. This is what gives rise to the cusps in \check{C} referred to above.
18.1.5. Definition. The multiplicity of a flex $p \in C$ is defined to be $\left(C \cdot \mathcal{H}_{C}\right)_{p}$.

Now take $C=E$ to be a smooth elliptic curve $(d=3)$. Then in the proof of Lemma 18.1.2, the precise form of the homogeneous polynomial is $(F(Z, X, Y)=)$

$$
\begin{equation*}
\lambda Y Z^{2}+\left(a X^{2}+2 b X Y+c Y^{2}\right) Z+\alpha X^{3}+\beta X^{2} Y+\gamma X Y^{2}+\delta Y^{3} \tag{18.1.6}
\end{equation*}
$$

Assume $a=0$ so that we have a flex at $[1: 0: 0]$. (Note that α must then be nonzero, in order that Y not divide F - which would make E reducible hence singular.) Then a short computation gives

$$
\operatorname{Hess}_{F}(1, x, y)=\left(\begin{array}{ccc}
2 \lambda y & 2 b y & 2 b x+2 c y+2 \lambda \\
2 b y & 6 \alpha x+2 \beta y & 2 \beta x+2 \gamma y+2 b \\
2 b x+2 c y+2 \lambda & 2 \beta x+2 \gamma y+2 b & 2 \gamma x+6 \delta y+2 c
\end{array}\right)
$$

Pull this back to $T_{p} E=\{y=0\}$ by making the substitution

$$
\operatorname{Hess}_{F}(1, t, 0)=\left(\begin{array}{ccc}
0 & 0 & 2 b t+2 \lambda \\
0 & 6 \alpha t & 2 \beta t+2 b \\
2 b t+2 \lambda & 2 \beta t+2 b & 2 \gamma t+2 c
\end{array}\right) ;
$$

this has determinant

$$
H(1, t, 0)=-(2 \lambda+2 b t)^{2} 6 \alpha t,
$$

and since $\alpha, \lambda \neq 0$

$$
\left(T_{p} E \cdot \mathcal{H}_{E}\right)_{p}=\operatorname{ord}_{0}(H(1, t, 0))=1
$$

So \mathcal{H}_{E} is smooth at p and $T_{p} E$ is not its tangent line. But then it intersects E transversely (since they have distinct tangent lines), so that $\left(E \cdot \mathcal{H}_{E}\right)_{p}=1$. This computation is valid at any flex of E (after a projective change of coordinates, of course), and so leads to:
18.1.7. Proposition. Any smooth cubic has 9 flexes, each of multiplicity one.

Proof. Since $\operatorname{deg}\left(\mathcal{H}_{E}\right)=3(d-2)=3$, Bezout gives us 9 intersection points of \mathcal{H}_{E} and E, counted with multiplicity; and we have demonstrated that the multiplicities are all 1.

18.2. Weierstrass form

Consider an arbitrary smooth cubic curve

$$
E=\{F(Z, X, Y)=0\} \subset \mathbb{P}^{2}
$$

In this section we will show that there exists a projective transformation putting E uniquely into a convenient form. (Alternately, you can view this as the existence of new projective coordinates in terms of which the equation of E takes said form, which is actually how the proof will go.)

We know E has a flex, and first of all we can choose coordinates so that this is at $[0: 0: 1]=: \mathcal{O}$ with $T_{\mathcal{O}} E=\{Z=0\}$. To get the general equation of such a cuve: take (18.1.6), set $a=0$ (for a flex), swap Z and Y, and (without loss of generality since $\lambda \neq 0$) normalize λ to 1 ; this gives

$$
F(Z, X, Y)=Z Y^{2}+\left(2 b X Z+c Z^{2}\right) Y+\alpha X^{3}+\beta X^{2} Z+\gamma X Z^{2}+\delta Z^{3}
$$

with affine form

$$
f(x, y):=F(1, x, y)=y^{2}+y f_{2}(x)+f_{3}(x) .
$$

Now the discriminant

$$
\begin{aligned}
& \mathcal{D}_{y}(f(x, y))=\mathcal{R}_{y}\left(y^{2}+y f_{2}(x)+f_{3}(x), 2 y+f_{2}(x)\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
1 & f_{2} & f_{3} \\
2 & f_{2} & 0 \\
0 & 2 & f_{2}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & f_{2} & f_{3} \\
& -f_{2} & -2 f_{3} \\
2 & f_{2}
\end{array}\right) \\
& =-f_{2}^{2}+4 f_{3}=-(2 b x+c)^{2}+4\left(\alpha x^{3}+\beta x^{2}+\gamma x+\delta\right)
\end{aligned}
$$

is a polynomial in x of degree 3 since $\alpha \neq 0$. Roots of $\left(\mathcal{D}_{y}(f)\right)(x)$ correspond to vertical lines $x=x_{0}$ which are tangent to (the affine part of) E at some point. Bezout tells us that the intersection number there can only be 2 , since $\operatorname{deg}(E)=3$ and $\left\{X=x_{0} Z\right\}$ already meets E at \mathcal{O}. Such "first order" tangencies mean the roots each have multiplicity one. Therefore E has three vertical tangents (apart from $\left.L_{\infty}=\{Z=0\}\right)$, at p_{1}, p_{2}, p_{3}.
18.2.1. Lemma. The $\left\{p_{i}\right\}_{i=1}^{3}$ are collinear.

Proof. In the picture

define p to be the third intersection point of $L_{p_{1} p_{2}}$ and E, and q the third intersection point of $L_{\mathcal{O} p}$ with E. Consider (in addition to E) the cubic curves $C_{1}=L_{\mathcal{O} p_{1}}+L_{\mathcal{O} p_{2}}+L_{\mathcal{O} p}$ and $C_{2}=T_{\mathcal{O}} E+2 L_{p_{1} p_{2}}$. We have

$$
E \cdot C_{1}=3 \mathcal{O}+2 p_{1}+2 p_{2}+p+q
$$

and

$$
E \cdot C_{2}=3 \mathcal{O}+2 p_{1}+2 p_{2}+2 p
$$

Arguing as in $\S 15.2$, the ratio of the homogeneous polynomials defining C_{1} and C_{2} gives a degree 1 map $E \rightarrow \mathbb{P}^{1}$ (which is impossible) if $p \neq q$. So $p=q$, and $L_{\mathcal{O} p}$ is tangent to E at p. It follows that p is p_{1}, p_{2}, or p_{3}. The first two are impossible since the tangent to p_{1} doesn't pass through p_{2} and vice versa; so $p=p_{3}$. Hence $p_{1}, p_{2}, p_{3} \in L_{p_{1} p_{2}}$.

Now stereographic projection from \mathcal{O} to $L_{p_{1} p_{2}}\left(\cong \mathbb{P}^{1}\right)$ presents E as a 2 : 1 cover of \mathbb{P}^{1} branched over p_{1}, p_{2}, p_{3}, and the image $T_{\mathcal{O}} E \cap$ $L_{p_{1} p_{2}}$ of \mathcal{O}. Furthermore $L_{p_{1} p_{2}}, L_{\mathcal{O} p_{1}}, T_{\mathcal{O}} E$ form a triangle, and so we can choose new projective coordinates $X^{\prime}, Y^{\prime}, Z^{\prime}$ in order that $L_{p_{1} p_{2}}=$ $\left\{Y^{\prime}=0\right\}, L_{\mathcal{O} p_{1}}=\left\{X^{\prime}=0\right\}$, and $T_{\mathcal{O}} E=\left\{Z^{\prime}=0\right\}$. For simplicity I'll drop the primes and just write X, Y, Z for this new coordinate system.

The following picture summarizes what we know:

where (on $Y=0$) p_{1} is at $\frac{X}{Z}=0$. Write $\alpha_{1}\left(\right.$ resp. $\left.\alpha_{2}\right)$ for the value of $\frac{X}{Z}$ at p_{2} (resp. p_{3}).

We would like an equation corresponding to this picture. Now, in the new coordinate system, the equation of E is still of the form

$$
F(Z, X, Y)=Z Y^{2}+\left(2 b X Z+c Z^{2}\right) Y+\alpha X^{3}+\beta X^{2} Z+\gamma X Z^{2}+\delta Z^{3}
$$

because we still have a flex at $[0: 0: 1]$ with tangent line $Z=0$.
But now (referring to the picture) also $[1: 0: 0] \in E$, which implies $\delta=0$. Moreover, $F_{Y}\left(=2 Y Z+2 b X Z+c Z^{2}\right)=0$ at $p_{1}=[1: 0: 0]$, $p_{2}=\left[1: \alpha_{1}: 0\right]$, and $p_{3}=\left[1: \alpha_{2}: 0\right]$ since the tangents are vertical there. This yields $c=0$, then $2 b \alpha_{1}=2 b \alpha_{2}=0$. As the $\left\{p_{i}\right\}$ are distinct (so $\alpha_{i} \neq 0$), we have $b=0$, and

$$
\begin{gathered}
F(Z, X, Y)=Y^{2} Z+X\left(\alpha X^{2}+\beta X Z+\gamma Z^{2}\right) \\
=Y^{2} Z+\alpha X\left(X-\alpha_{1} Z\right)\left(X-\alpha_{2} Z\right)
\end{gathered}
$$

Now define new coordinates by the projective transformation

$$
X=\sqrt[3]{\frac{4}{\alpha}} X_{0}+\frac{\alpha_{1}+\alpha_{2}}{3} Z_{0}, \quad Y=i Y_{0}, \quad Z=Z_{0}
$$

which makes the equation

$$
\begin{aligned}
\tilde{F}\left(Z_{0}, X_{0}, Y_{0}\right) & =F\left(\sqrt[3]{\frac{4}{\alpha}} X_{0}+\frac{\alpha_{1}+\alpha_{2}}{3} Z_{0}, i Y_{0}, Z_{0}\right) \\
& =-Y_{0}^{2} Z_{0}+4 X_{0}^{3}-g_{2} X_{0} Z_{0}^{2}-g_{3} Z_{0}^{3}
\end{aligned}
$$

Dropping the subscript 0's and taking the affine equation, we have put E in Weierstrass form:
18.2.2. Proposition. (a) Any smooth cubic $E \subset \mathbb{P}^{2}$ is projectively equivalent to a curve with affine equation of the form

$$
\begin{equation*}
y^{2}=4 x^{3}-g_{2} x-g_{3} \tag{18.2.3}
\end{equation*}
$$

(b) For a given E, this form is unique up to a change of the form $\left(g_{2}, g_{3}\right) \mapsto$ $\left(\xi^{4} g_{2}, \xi^{6} g_{3}\right)$ where $\xi \in \mathbb{C}^{*}$; in particular,

$$
j:=\frac{g_{2}^{3}}{g_{2}^{3}-27 g_{3}^{2}} \in \mathbb{C}
$$

is an invariant of E.

Proof. We have just seen (a). To show (b), write the projective equation $Y^{2} Z=4 X^{3}-g_{2} X Z^{2}-g_{3} Z^{3}$. It is not difficult to check that any projective linear transformation fixing \mathcal{O} and preserving the form of this equation (up to rescaling) takes the form $X=\varepsilon X_{0}, Y=$ $\eta Y_{0}, Z=\frac{\varepsilon^{3}}{\eta^{2}} Z_{0}$. Taking $\xi:=\frac{\varepsilon}{\eta}$ gives exactly the claimed effect on $\left(g_{2}, g_{3}\right)$, and j is unchanged by this transformation.

What about a projectivity which sends a different flex \mathcal{O}^{\prime} to [0:0:1], "replacing" \mathcal{O} ? (As the equation says $\left(L_{\infty} \cdot E\right)_{[0: 0: 1]}=3$, we must have a flex there.) As with \mathcal{O}, we have again four tangent lines $\left(\left\{L_{\mathcal{O}^{\prime} p_{i}^{\prime}}\left(=T_{p_{i}^{\prime}} E\right)\right\}_{i=1}^{3}\right.$ and $\left.T_{\mathcal{O}^{\prime}} E\right)$ through \mathcal{O}^{\prime}, which can be regarded as 4 points in a \mathbb{P}^{1}. The Weierstrass forms will be equivalent in the sense just described if (for some ordering of the p_{i} resp. p_{i}^{\prime}) the crossratios of these point-configurations are the same for \mathcal{O} and \mathcal{O}^{\prime}.

In fact, there are 4 tangent lines to E through any non-flex as well (use a discriminant as above), and so we get a continuous algebraic
map from E to unordered 4-tuples of distinct points on \mathbb{P}^{1}. By passing to a finite unbranched cover of E, we get a map to ordered 4tuples. Since the cross-ratio of 4 distinct points lies in \mathbb{C}^{*}, this gives a nonvanishing holomorphic function on E, which is constant by Liouville. In particular, it takes equal values on all 9 flexes.

Note that the vanishing of the x^{2} term on the right-hand side of (18.2.3) indicates that its roots sum to zero.

Exercises

(1) Show that the cubic curve

$$
C=\left\{0=X^{3}+Y^{3}-X Y(X+Y+Z)\right\} \subset \mathbb{P}^{2}
$$

has one singular point (a node) and exactly three collinear flexes. [Hint: start by computing the Hessian, then find the Hessian curve and determine its intersections with C.]
(2) (i) Fill in the computational details in the first paragraph of the proof of Prop. 18.2.2. (ii) Check that the coordinate change just before Prop. 18.2.2 eliminates the $X^{2} Z$ term as claimed.
(3) Prove that through every non-flex of a smooth cubic E there are 4 distinct tangent lines to E.
(4) Put the Fermat curve $X^{3}+Y^{3}=Z^{3}$ in Weierstrass form and calculate its j-invariant.
(5) Consider the irreducible quintic curve $C=\left\{X^{5}+Y Z^{4}=0\right\} \subset$ \mathbb{P}^{2}. (a) Without doing any computation, put an upper bound on the number of flexes. (b) Find all singularities of C. (c) Find all flexes of C and their multiplicities.

