
CHAPTER 18

Putting a nonsingular cubic in standard form

An irreducible algebraic curve E ⊂ P2 is an elliptic curve if the
genus of its normalization Ẽ is 1 (topologically it looks like a donut).
By the genus formula, all smooth cubic curves are elliptic. In the next
two chapters we will show not only that such a curve is isomorphic
to C/Λ for some lattice Λ, but will get a description of Λ which
shows its dependence on E. This is important, since for two different
lattices Λ = Z 〈α, β〉 and Λ′ = Z 〈α′, β′〉, the complex 1-tori C/Λ and
C/Λ′ need not be isomorphic as Riemann surfaces. (More precisely,
they are isomorphic if and only if [α : β] is carried to [α′ : β′] by
an integral projectivity, i.e. a transformation of P1 induced by A ∈
PSL2(Z).)

Even more significant is how we do this: by putting E in Weier-
strass form, integrating a holomorphic form on it to get a map to a
complex torus, and showing that the Weierstrass ℘-function and its
derivative invert this map. To put E in this form, a choice of flex is
required. What is that?

18.1. Flexes

Let C = {F(Z, X, Y) = 0} ⊂ P2 be an irreducible algebraic curve
of degree d ≥ 3. One way of thinking of the tangent line at a nonsin-
gular point p ∈ C is as the unique line satisfying (C · TpC)p ≥ 2.

18.1.1. DEF INITION. A smooth point p ∈ C is called a flex if the
intersection multiplicity

(C · TpC)p ≥ 3.
221
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Intuitively these are the inflection points of C, and can be seen to cor-
respond to cusps of the dual curve Č (see §4.4). Since Č has finitely
many singularities, this gives one proof that there are finitely many
flexes; we will however take a different approach.

Denoting partial derivatives by subscript, e.g. FZX := ∂2F
∂Z∂X , the

Hessian of F is the polynomial matrix

HessF =

%

&'
FZZ FZX FZY

FXZ FXX FXY

FYZ FYX FYY

(

)* .

Its determinant
H := det(HessF)

is clearly a homogeneous polynomial of degree 3(d − 2). Call HC :=
{H(Z, X, Y) = 0} ⊂ P2 the Hessian curve associated to C.

18.1.2. LEMMA. Let p ∈ C be a smooth point. Then p is a flex ⇐⇒
p ∈ HC.

PROOF. Since intersection numbers are invariant under projec-
tivities, we may assume p = [1 : 0 : 0], TpC = {Y = 0}. In affine
coordinates, writing f (x, y) := F(1, x, y), this means that the curve
{ f (x, y) = 0} ⊂ C2 contains (0, 0) and is tangent to {y = 0}. So
f (0, 0) = 0 and ( fx(0, 0), fy(0, 0)) = (0, λ) where λ ∕= 0, so that

f (x, y) = λy + (ax2 + 2bxy + cy2) + higher-order terms.

Parametrizing TpC by t +→ (t, 0), we have

(C · TpC)p = ord0 ( f (t, 0)) = ord0(at2 + h.o.t.),

which is ≥ 3 (yielding a flex) if and only if a = 0.
Now the above form of f implies

F(Z, X, Y) = λYZd−1 + (aX2 + 2bXY + cY2)Zd−2 + · · ·
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so that

HessF(1, 0, 0) =

%

&'
0 0 (d − 1)λ
0 2a 2b

(d − 1)λ 2b 2c

(

)* .

Taking the determinant,

H(p) = det(HessF(p)) = −2(d − 1)2λ2a.

This is clearly zero (i.e. p ∈ HC) if and only if a = 0. □

Now Bezout guarantees intersections of C and HC. If C is singu-
lar then these might all be at singular points, so that there may be
no flexes (though this isn’t typical: see the exercises). On the other
hand, if C is smooth then by Lemma 18.1.2 we do have flexes. Refin-
ing this observation:

18.1.3. PROPOSITION. On a nonsingular curve C of degree d ≥ 3,
there exists at least one and at most 3d(d − 2) flexes.

PROOF. By Bezout,

∑
p∈C∩HC

(C · HC)p = (C · HC) = deg(C) · deg(HC) = d · 3(d − 2).

So the number of points in C ∩HC is between 1 and 3d(d − 2), all
points are smooth points, and we apply Lemma 18.1.2. □

18.1.4. REMARK. Since HessF is just the multivariable derivative
(Jacobian matrix) of DC : P2 → P2 (§4.4), the intersections of C and
HC may be viewed as degeneracies of the map DC|C : C ↠ Č. This
is what gives rise to the cusps in Č referred to above.

18.1.5. DEF INITION. The multiplicity of a flex p ∈ C is defined to
be (C · HC)p.

Now take C = E to be a smooth elliptic curve (d = 3). Then
in the proof of Lemma 18.1.2, the precise form of the homogeneous
polynomial is (F(Z, X, Y) =)

(18.1.6)
λYZ2 + (aX2 + 2bXY + cY2)Z + αX3 + βX2Y + γXY2 + δY3.
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Assume a = 0 so that we have a flex at [1 : 0 : 0]. (Note that α must
then be nonzero, in order that Y not divide F — which would make
E reducible hence singular.) Then a short computation gives

HessF(1, x, y) =

%

&'
2λy 2by 2bx + 2cy + 2λ

2by 6αx + 2βy 2βx + 2γy + 2b
2bx + 2cy + 2λ 2βx + 2γy + 2b 2γx + 6δy + 2c

)

*+ .

Pull this back to TpE = {y = 0} by making the substitution

HessF(1, t, 0) =

%

&'
0 0 2bt + 2λ

0 6αt 2βt + 2b
2bt + 2λ 2βt + 2b 2γt + 2c

(

)* ;

this has determinant

H(1, t, 0) = −(2λ + 2bt)26αt,

and since α, λ ∕= 0

(TpE · HE)p = ord0(H(1, t, 0)) = 1.

So HE is smooth at p and TpE is not its tangent line. But then it
intersects E transversely (since they have distinct tangent lines), so
that (E · HE)p = 1. This computation is valid at any flex of E (after a
projective change of coordinates, of course), and so leads to:

18.1.7. PROPOSITION. Any smooth cubic has 9 flexes, each of multi-
plicity one.

PROOF. Since deg(HE) = 3(d − 2) = 3, Bezout gives us 9 inter-
section points of HE and E, counted with multiplicity; and we have
demonstrated that the multiplicities are all 1. □
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18.2. Weierstrass form

Consider an arbitrary smooth cubic curve

E = {F(Z, X, Y) = 0} ⊂ P2.

In this section we will show that there exists a projective transfor-
mation putting E uniquely into a convenient form. (Alternately, you
can view this as the existence of new projective coordinates in terms
of which the equation of E takes said form, which is actually how
the proof will go.)

We know E has a flex, and first of all we can choose coordinates
so that this is at [0 : 0 : 1] =: O with TOE = {Z = 0}. To get the
general equation of such a cuve: take (18.1.6), set a = 0 (for a flex),
swap Z and Y, and (without loss of generality since λ ∕= 0) normalize
λ to 1; this gives

F(Z, X, Y) = ZY2 + (2bXZ + cZ2)Y + αX3 + βX2Z + γXZ2 + δZ3,

with affine form

f (x, y) := F(1, x, y) = y2 + y f2(x) + f3(x).

Now the discriminant

Dy( f (x, y)) = Ry(y2 + y f2(x) + f3(x), 2y + f2(x))

= det

%

&'
1 f2 f3

2 f2 0
0 2 f2

(

)* = det

%

&'
1 f2 f3

− f2 −2 f3

2 f2

(

)*

= − f 2
2 + 4 f3 = −(2bx + c)2 + 4(αx3 + βx2 + γx + δ)

is a polynomial in x of degree 3 since α ∕= 0. Roots of (Dy( f ))(x)
correspond to vertical lines x = x0 which are tangent to (the affine
part of) E at some point. Bezout tells us that the intersection num-
ber there can only be 2, since deg(E) = 3 and {X = x0Z} already
meets E at O. Such “first order” tangencies mean the roots each
have multiplicity one. Therefore E has three vertical tangents (apart
from L∞ = {Z = 0}), at p1, p2, p3.
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18.2.1. LEMMA. The {pi}3
i=1 are collinear.

PROOF. In the picture
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define p to be the third intersection point of Lp1 p2 and E, and q the
third intersection point of LOp with E. Consider (in addition to E)
the cubic curves C1 = LOp1 + LOp2 + LOp and C2 = TOE + 2Lp1 p2 .
We have

E · C1 = 3O + 2p1 + 2p2 + p + q

and
E · C2 = 3O + 2p1 + 2p2 + 2p.

Arguing as in §15.2, the ratio of the homogeneous polynomials defin-
ing C1 and C2 gives a degree 1 map E → P1 (which is impossible)
if p ∕= q. So p = q, and LOp is tangent to E at p. It follows that
p is p1, p2, or p3. The first two are impossible since the tangent
to p1 doesn’t pass through p2 and vice versa; so p = p3. Hence
p1, p2, p3 ∈ Lp1 p2 . □

Now stereographic projection from O to Lp1 p2(
∼= P1) presents E

as a 2 : 1 cover of P1 branched over p1, p2, p3, and the image TOE ∩
Lp1 p2 of O. Furthermore Lp1 p2 , LOp1 , TOE form a triangle, and so we
can choose new projective coordinates X′, Y′, Z′ in order that Lp1 p2 =

{Y′ = 0}, LOp1 = {X′ = 0}, and TOE = {Z′ = 0}. For simplicity I’ll
drop the primes and just write X, Y, Z for this new coordinate system.
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The following picture summarizes what we know:
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where (on Y = 0) p1 is at X
Z = 0. Write α1 (resp. α2) for the value of

X
Z at p2 (resp. p3).

We would like an equation corresponding to this picture. Now,
in the new coordinate system, the equation of E is still of the form

F(Z, X, Y) = ZY2 + (2bXZ + cZ2)Y + αX3 + βX2Z + γXZ2 + δZ3,

because we still have a flex at [0 : 0 : 1] with tangent line Z = 0.
But now (referring to the picture) also [1 : 0 : 0] ∈ E, which implies
δ = 0. Moreover, FY(= 2YZ + 2bXZ + cZ2) = 0 at p1 = [1 : 0 : 0],
p2 = [1 : α1 : 0], and p3 = [1 : α2 : 0] since the tangents are vertical
there. This yields c = 0, then 2bα1 = 2bα2 = 0. As the {pi} are
distinct (so αi ∕= 0), we have b = 0, and

F(Z, X, Y) = Y2Z + X(αX2 + βXZ + γZ2)

= Y2Z + αX(X − α1Z)(X − α2Z).

Now define new coordinates by the projective transformation

X =
3

\
4
α

X0 +
α1 + α2

3
Z0 , Y = iY0 , Z = Z0 ,
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which makes the equation

F̃(Z0, X0, Y0) = F

7
3

\
4
α

X0 +
α1 + α2

3
Z0, iY0, Z0

8

= −Y2
0 Z0 + 4X3

0 − g2X0Z2
0 − g3Z3

0 .

Dropping the subscript 0’s and taking the affine equation, we have
put E in Weierstrass form:

18.2.2. PROPOSITION. (a) Any smooth cubic E ⊂ P2 is projectively
equivalent to a curve with affine equation of the form

(18.2.3) y2 = 4x3 − g2x − g3.

(b) For a given E, this form is unique up to a change of the form (g2, g3) +→
(ξ4g2, ξ6g3) where ξ ∈ C∗; in particular,

j :=
g3

2

g3
2 − 27g2

3
∈ C

is an invariant of E.

PROOF. We have just seen (a). To show (b), write the projective
equation Y2Z = 4X3 − g2XZ2 − g3Z3. It is not difficult to check
that any projective linear transformation fixing O and preserving the
form of this equation (up to rescaling) takes the form X = εX0, Y =

ηY0, Z = ε3

η2 Z0. Taking ξ := ε
η gives exactly the claimed effect on

(g2, g3), and j is unchanged by this transformation.
What about a projectivity which sends a different flex O′ to [0:0:1],

“replacing” O? (As the equation says (L∞ · E)[0:0:1] = 3, we must
have a flex there.) As with O, we have again four tangent lines
({LO′p′i

(= Tp′i
E)}3

i=1 and TO′E) through O′, which can be regarded
as 4 points in a P1. The Weierstrass forms will be equivalent in the
sense just described if (for some ordering of the pi resp. p′i) the cross-
ratios of these point-configurations are the same for O and O′.

In fact, there are 4 tangent lines to E through any non-flex as well
(use a discriminant as above), and so we get a continuous algebraic
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map from E to unordered 4-tuples of distinct points on P1. By pass-
ing to a finite unbranched cover of E, we get a map to ordered 4-
tuples. Since the cross-ratio of 4 distinct points lies in C∗, this gives
a nonvanishing holomorphic function on E, which is constant by Li-
ouville. In particular, it takes equal values on all 9 flexes. □

Note that the vanishing of the x2 term on the right-hand side of
(18.2.3) indicates that its roots sum to zero.

Exercises
(1) Show that the cubic curve

C = {0 = X3 + Y3 − XY(X + Y + Z)} ⊂ P2

has one singular point (a node) and exactly three collinear flexes.
[Hint: start by computing the Hessian, then find the Hessian
curve and determine its intersections with C.]

(2) (i) Fill in the computational details in the first paragraph of the
proof of Prop. 18.2.2. (ii) Check that the coordinate change just
before Prop. 18.2.2 eliminates the X2Z term as claimed.

(3) Prove that through every non-flex of a smooth cubic E there are
4 distinct tangent lines to E.

(4) Put the Fermat curve X3 + Y3 = Z3 in Weierstrass form and cal-
culate its j-invariant.

(5) Consider the irreducible quintic curve C = {X5 + YZ4 = 0} ⊂
P2. (a) Without doing any computation, put an upper bound on
the number of flexes. (b) Find all singularities of C. (c) Find all
flexes of C and their multiplicities.


