CHAPTER 18

Putting a nonsingular cubic in standard form

An irreducible algebraic curve $E \subset \mathbb{P}^2$ is an elliptic curve if the genus of its normalization \bar{E} is 1 (topologically it looks like a donut). By the genus formula, all smooth cubic curves are elliptic. In the next two chapters we will show not only that such a curve is isomorphic to C/Λ for some lattice Λ, but will get a description of Λ which shows its dependence on E. This is important, since for two different lattices $\Lambda = \mathbb{Z} \langle \alpha, \beta \rangle$ and $\Lambda' = \mathbb{Z} \langle \alpha', \beta' \rangle$, the complex 1-tori C/Λ and C/Λ' need not be isomorphic as Riemann surfaces. (More precisely, they are isomorphic if and only if $[\alpha : \beta]$ is carried to $[\alpha' : \beta']$ by an integral projectivity, i.e. a transformation of \mathbb{P}^1 induced by $A \in PSL_2(\mathbb{Z})$.)

Even more significant is how we do this: by putting E in Weierstrass form, integrating a holomorphic form on it to get a map to a complex torus, and showing that the Weierstrass \wp-function and its derivative invert this map. To put E in this form, a choice of flex is required. What is that?

18.1. Flexes

Let $C = \{F(Z, X, Y) = 0\} \subset \mathbb{P}^2$ be an irreducible algebraic curve of degree $d \geq 3$. One way of thinking of the tangent line at a nonsingular point $p \in C$ is as the unique line satisfying $(C \cdot T_p C)_p \geq 2$.

18.1.1. Definition. A smooth point $p \in C$ is called a flex if the intersection multiplicity

$$(C \cdot T_p C)_p \geq 3.$$
Intuitively these are the inflection points of C, and can be seen to correspond to cusps of the dual curve \tilde{C} (see §4.4). Since \tilde{C} has finitely many singularities, this gives one proof that there are finitely many flexes; we will however take a different approach.

Denoting partial derivatives by subscript, e.g. $F_{ZX} := \frac{\partial^2 F}{\partial Z \partial X}$, the Hessian of F is the polynomial matrix

$$\text{Hess}_F = \begin{pmatrix} F_{ZZ} & F_{ZX} & F_{ZY} \\ F_{XZ} & F_{XX} & F_{XY} \\ F_{YZ} & F_{YX} & F_{YY} \end{pmatrix}.$$

Its determinant

$$H := \det(\text{Hess}_F)$$

is clearly a homogeneous polynomial of degree $3(d-2)$. Call $\mathcal{H}_C := \{H(Z, X, Y) = 0\} \subset \mathbb{P}^2$ the Hessian curve associated to C.

18.1.2. Lemma. Let $p \in C$ be a smooth point. Then p is a flex $\iff p \in \mathcal{H}_C$.

Proof. Since intersection numbers are invariant under projectivities, we may assume $p = [1 : 0 : 0]$, $T_p C = \{Y = 0\}$. In affine coordinates, writing $f(x, y) := F(1, x, y)$, this means that the curve $\{f(x, y) = 0\} \subset \mathbb{C}^2$ contains $(0, 0)$ and is tangent to $\{y = 0\}$. So $f(0, 0) = 0$ and $(f_x(0, 0), f_y(0, 0)) = (0, \lambda)$ where $\lambda \neq 0$, so that

$$f(x, y) = \lambda y + (ax^2 + 2bxy + cy^2) + \text{higher-order terms}.$$

Parametrizing $T_p C$ by $t \mapsto (t, 0)$, we have

$$(C \cdot T_p C)_p = \text{ord}_0 (f(t, 0)) = \text{ord}_0 (at^2 + \text{h.o.t.}),$$

which is ≥ 3 (yielding a flex) if and only if $a = 0$.

Now the above form of f implies

$$F(Z, X, Y) = \lambda Y Z^{d-1} + (aX^2 + 2bXY + cY^2) Z^{d-2} + \cdots$$
so that

\[
Hess_F(1, 0, 0) = \begin{pmatrix}
0 & 0 & (d - 1)\lambda \\
0 & 2a & 2b \\
(d - 1)\lambda & 2b & 2c
\end{pmatrix}.
\]

Taking the determinant,

\[
H(p) = \det(\text{Hess}_F(p)) = -2(d - 1)^2\lambda^2 a.
\]

This is clearly zero (i.e. \(p \in \mathcal{H}_C \)) if and only if \(a = 0 \). \qed

Now Bezout guarantees intersections of \(C \) and \(\mathcal{H}_C \). If \(C \) is singular then these might all be at singular points, so that there may be no flexes (though this isn’t typical: see the exercises). On the other hand, if \(C \) is smooth then by Lemma 18.1.2 we do have flexes. Refining this observation:

18.1.3. **Proposition.** On a nonsingular curve \(C \) of degree \(d \geq 3 \), there exists at least one and at most \(3d(d - 2) \) flexes.

Proof. By Bezout,

\[
\sum_{p \in C \cap \mathcal{H}_C} (C \cdot \mathcal{H}_C)_p = (C \cdot \mathcal{H}_C) = \deg(C) \cdot \deg(\mathcal{H}_C) = d \cdot 3(d - 2).
\]

So the number of points in \(C \cap \mathcal{H}_C \) is between 1 and \(3d(d - 2) \), all points are smooth points, and we apply Lemma 18.1.2. \qed

18.1.4. **Remark.** Since \(\text{Hess}_F \) is just the multivariable derivative (Jacobian matrix) of \(D_C : \mathbb{P}^2 \to \mathbb{P}^2 \) (§4.4), the intersections of \(C \) and \(\mathcal{H}_C \) may be viewed as degeneracies of the map \(D_C|_C : C \to \tilde{\mathbb{C}} \). This is what gives rise to the cusps in \(\tilde{\mathbb{C}} \) referred to above.

18.1.5. **Definition.** The multiplicity of a flex \(p \in C \) is defined to be \((C \cdot \mathcal{H}_C)_p \).

Now take \(C = E \) to be a smooth elliptic curve \((d = 3) \). Then in the proof of Lemma 18.1.2, the precise form of the homogeneous polynomial is \((F(Z, X, Y) =) \)

\[
\lambda Y Z^2 + (a X^2 + 2b XY + c Y^2) Z + aX^3 + \beta X^2 Y + \gamma XY^2 + \delta Y^3.
\]
Assume \(a = 0 \) so that we have a flex at \([1 : 0 : 0]\). (Note that \(\alpha \) must then be nonzero, in order that \(Y \) not divide \(F \) — which would make \(E \) reducible hence singular.) Then a short computation gives

\[
Hess_F(1, x, y) = \begin{pmatrix}
2\lambda y & 2by & 2bx + 2cy + 2\lambda \\
2by & 6ax + 2\beta y & 2\beta x + 2\gamma y + 2b \\
2bx + 2cy + 2\lambda & 2\beta x + 2\gamma y + 2b & 2\gamma x + 6\delta y + 2c
\end{pmatrix}.
\]

Pull this back to \(T_pE = \{ y = 0 \} \) by making the substitution

\[
Hess_F(1, t, 0) = \begin{pmatrix}
0 & 0 & 2bt + 2\lambda \\
0 & 6\alpha t & 2\beta t + 2b \\
2bt + 2\lambda & 2\beta t + 2b & 2\gamma t + 2c
\end{pmatrix};
\]

this has determinant

\[
H(1, t, 0) = -(2\lambda + 2bt)^2 6\alpha t,
\]

and since \(\alpha, \lambda \neq 0 \)

\[
(T_pE \cdot \mathcal{H}_E)_p = \text{ord}_0(H(1, t, 0)) = 1.
\]

So \(\mathcal{H}_E \) is smooth at \(p \) and \(T_pE \) is not its tangent line. But then it intersects \(E \) transversely (since they have distinct tangent lines), so that \((E \cdot \mathcal{H}_E)_p = 1 \). This computation is valid at any flex of \(E \) (after a projective change of coordinates, of course), and so leads to:

18.1.7. Proposition. Any smooth cubic has 9 flexes, each of multiplicity one.

Proof. Since \(\text{deg}(\mathcal{H}_E) = 3(d - 2) = 3 \), Bezout gives us 9 intersection points of \(\mathcal{H}_E \) and \(E \), counted with multiplicity; and we have demonstrated that the multiplicities are all 1. \(\square \)
18.2. Weierstrass form

Consider an arbitrary smooth cubic curve
\[E = \{ F(Z, X, Y) = 0 \} \subset \mathbb{P}^2. \]

In this section we will show that there exists a projective transformation putting \(E \) uniquely into a convenient form. (Alternately, you can view this as the existence of new projective coordinates in terms of which the equation of \(E \) takes said form, which is actually how the proof will go.)

We know \(E \) has a flex, and first of all we can choose coordinates so that this is at \([0 : 0 : 1] =: \mathcal{O} \) with \(T_{\mathcal{O}} E = \{ Z = 0 \} \). To get the general equation of such a curve: take (18.1.6), set \(a = 0 \) (for a flex), swap \(Z \) and \(Y \), and (without loss of generality since \(\lambda \neq 0 \)) normalize \(\lambda \) to 1; this gives
\[F(Z, X, Y) = ZY^2 + (2bXZ + cZ^2)Y + aX^3 + \beta X^2 Z + \gamma XZ^2 + \delta Z^3, \]
with affine form
\[f(x, y) := F(1, x, y) = y^2 + yf_2(x) + f_3(x). \]

Now the discriminant
\[
\mathcal{D}_y(f(x, y)) = \mathcal{R}_y(y^2 + yf_2(x) + f_3(x), 2y + f_2(x))
\]
\[= \det \begin{pmatrix} 1 & f_2 & f_3 \\ 2 & f_2 & 0 \\ 0 & 2 & f_2 \end{pmatrix} = \det \begin{pmatrix} 1 & f_2 & f_3 \\ -f_2 & -2f_3 \\ 2 & f_2 \end{pmatrix}
\]
\[= -f_2^2 + 4f_3 = -(2bx + c)^2 + 4(\alpha x^3 + \beta x^2 + \gamma x + \delta) \]
is a polynomial in \(x \) of degree 3 since \(a \neq 0 \). Roots of \((\mathcal{D}_y(f))(x) \) correspond to vertical lines \(x = x_0 \) which are tangent to (the affine part of) \(E \) at some point. Bezout tells us that the intersection number there can only be 2, since \(\deg(E) = 3 \) and \(\{ X = x_0Z \} \) already meets \(E \) at \(\mathcal{O} \). Such “first order” tangencies mean the roots each have multiplicity one. Therefore \(E \) has three vertical tangents (apart from \(L_\infty = \{ Z = 0 \} \)), at \(p_1, p_2, p_3. \)
18.2.1. LEMMA. The \(\{p_i\}_{i=1}^3 \) are collinear.

PROOF. In the picture

\[
\begin{align*}
E \cap T &= \{p_3\} \quad \text{and} \\
L_{p_1 p_2} &= \{q\} \\
\end{align*}
\]

define \(p \) to be the third intersection point of \(L_{p_1 p_2} \) and \(E \), and \(q \) the third intersection point of \(L_{O \cdot p} \) with \(E \). Consider (in addition to \(E \)) the cubic curves \(C_1 = L_{O \cdot p_1} + L_{O \cdot p_2} + L_{O \cdot p} \) and \(C_2 = T_{O \cdot E} + 2L_{p_1 p_2} \). We have

\[
E \cdot C_1 = 3O + 2p_1 + 2p_2 + p + q
\]

and

\[
E \cdot C_2 = 3O + 2p_1 + 2p_2 + 2p.
\]

Arguing as in §15.2, the ratio of the homogeneous polynomials defining \(C_1 \) and \(C_2 \) gives a degree 1 map \(E \to \mathbb{P}^1 \) (which is impossible) if \(p \neq q \). So \(p = q \), and \(L_{O \cdot p} \) is tangent to \(E \) at \(p \). It follows that \(p \) is \(p_1 \), \(p_2 \), or \(p_3 \). The first two are impossible since the tangent to \(p_1 \) doesn’t pass through \(p_2 \) and vice versa; so \(p = p_3 \). Hence \(p_1, p_2, p_3 \in L_{p_1 p_2} \).

Now stereographic projection from \(O \) to \(L_{p_1 p_2} (\cong \mathbb{P}^1) \) presents \(E \) as a \(2 : 1 \) cover of \(\mathbb{P}^1 \) branched over \(p_1, p_2, p_3 \), and the image \(T_{O \cdot E} \cap L_{p_1 p_2} \) of \(O \). Furthermore \(L_{p_1 p_2}, L_{O \cdot p_1}, T_{O \cdot E} \) form a triangle, and so we can choose new projective coordinates \(X', Y', Z' \) in order that \(L_{p_1 p_2} = \{Y' = 0\}, L_{O \cdot p_1} = \{X' = 0\}, \) and \(T_{O \cdot E} = \{Z' = 0\} \). For simplicity I’ll drop the primes and just write \(X, Y, Z \) for this new coordinate system.
The following picture summarizes what we know:

where (on $Y = 0$) p_1 is at $\frac{X}{Z} = 0$. Write α_1 (resp. α_2) for the value of $\frac{X}{Z}$ at p_2 (resp. p_3).

We would like an equation corresponding to this picture. Now, in the new coordinate system, the equation of E is still of the form

$$F(Z, X, Y) = ZY^2 + (2bXZ + cZ^2)Y + aX^3 + \beta X^2Z + \gamma XZ^2 + \delta Z^3,$$

because we still have a flex at $[0 : 0 : 1]$ with tangent line $Z = 0$. But now (referring to the picture) also $[1 : 0 : 0] \in E$, which implies $\delta = 0$. Moreover, $F_Y(= 2YZ + 2bXZ + cZ^2) = 0$ at $p_1 = [1 : 0 : 0]$, $p_2 = [1 : \alpha_1 : 0]$, and $p_3 = [1 : \alpha_2 : 0]$ since the tangents are vertical there. This yields $c = 0$, then $2b\alpha_1 = 2b\alpha_2 = 0$. As the $\{p_i\}$ are distinct (so $\alpha_i \neq 0$), we have $b = 0$, and

$$F(Z, X, Y) = Y^2Z + X(\alpha X^2 + \beta XZ + \gamma Z^2)$$

$$= Y^2Z + \alpha X(X - \alpha_1 Z)(X - \alpha_2 Z).$$

Now define new coordinates by the projective transformation

$$X = \sqrt[3]{\frac{4}{\alpha}} X_0 + \frac{\alpha_1 + \alpha_2}{3} Z_0, \quad Y = iY_0, \quad Z = Z_0,$$
which makes the equation
\[
\tilde{F}(Z_0, X_0, Y_0) = F \left(\sqrt[3]{\frac{4}{3} X_0 + \frac{\alpha_1 + \alpha_2}{3} Z_0}, iY_0, Z_0 \right)
\]
\[= -Y_0^2 Z_0 + 4X_0^3 - g_2 X_0 Z_0^2 - g_3 Z_0^3.\]

Dropping the subscript 0’s and taking the affine equation, we have put \(E\) in Weierstrass form:

18.2.2. Proposition. (a) Any smooth cubic \(E \subset \mathbb{P}^2\) is projectively equivalent to a curve with affine equation of the form

\[
y^2 = 4x^3 - g_2 x - g_3.
\]

(18.2.3)

(b) For a given \(E\), this form is unique up to a change of the form \((g_2, g_3) \mapsto (\xi^4 g_2, \xi^6 g_3)\) where \(\xi \in \mathbb{C}^*\); in particular,

\[j := \frac{g_3^3}{g_2^3 - 27g_3^2} \in \mathbb{C}\]

is an invariant of \(E\).

Proof. We have just seen (a). To show (b), write the projective equation \(Y^2Z = 4X^3 - g_2 XZ^2 - g_3 Z^3\). It is not difficult to check that any projective linear transformation fixing \(O\) and preserving the form of this equation (up to rescaling) takes the form \(X = \varepsilon X_0, Y = \eta Y_0, Z = \xi^3 Z_0\). Taking \(\xi := \frac{\xi}{\eta}\) gives exactly the claimed effect on \((g_2, g_3)\), and \(j\) is unchanged by this transformation.

What about a projectivity which sends a different flex \(O'\) to \([0:0:1]\), “replacing” \(O\)? (As the equation says \((L_\infty \cdot E)[0:0:1] = 3\, \text{we must have a flex there.}\) As with \(O\), we have again four tangent lines \((\{L_{O'} p_i(= T_{p_i} E)\})_{i=1}^3\) and \(T_{O'} E\) through \(O'\), which can be regarded as 4 points in \(\mathbb{P}^1\). The Weierstrass forms will be equivalent in the sense just described if (for some ordering of the \(p_i\) resp. \(p'_i\)) the cross-ratios of these point-configurations are the same for \(O\) and \(O'\).

In fact, there are 4 tangent lines to \(E\) through any non-flex as well (use a discriminant as above), and so we get a continuous algebraic
map from \(E \) to unordered 4-tuples of distinct points on \(\mathbb{P}^1 \). By passing to a finite unbranched cover of \(E \), we get a map to ordered 4-tuples. Since the cross-ratio of 4 distinct points lies in \(\mathbb{C}^* \), this gives a nonvanishing holomorphic function on \(E \), which is constant by Liouville. In particular, it takes equal values on all 9 flexes.

Note that the vanishing of the \(x^2 \) term on the right-hand side of (18.2.3) indicates that its roots sum to zero.

Exercises

1. Show that the cubic curve
 \[
 C = \{ 0 = X^3 + Y^3 - XY(X + Y + Z) \} \subset \mathbb{P}^2
 \]
 has one singular point (a node) and exactly three collinear flexes. [Hint: start by computing the Hessian, then find the Hessian curve and determine its intersections with \(C \).]

2. (i) Fill in the computational details in the first paragraph of the proof of Prop. 18.2.2. (ii) Check that the coordinate change just before Prop. 18.2.2 eliminates the \(X^2Z \) term as claimed.

3. Prove that through every non-flex of a smooth cubic \(E \) there are 4 distinct tangent lines to \(E \).

4. Put the Fermat curve \(X^3 + Y^3 = Z^3 \) in Weierstrass form and calculate its \(j \)-invariant.

5. Consider the irreducible quintic curve \(C = \{ X^5 + YZ^4 = 0 \} \subset \mathbb{P}^2 \). (a) Without doing any computation, put an upper bound on the number of flexes. (b) Find all singularities of \(C \). (c) Find all flexes of \(C \) and their multiplicities.