
CHAPTER 2

Riemann surfaces and algebraic curves

In this chapter we will define (complex) algebraic curves (rep-
resented by “C”),1 complex 1-manifolds (represented by “M”), and
Riemann surfaces, and start to consider under what additional hy-
potheses they are equivalent concepts.

2.1. Algebraic curves

2.1.1. DEFINITION. Let Sm
2 denote homogeneous polynomials of de-

gree m in x, y (the “2” stands for “2 variables”).2 These are polyno-
mials of the form

fm(x, y) = ∑
j,k≥0

j+k=m

cjkxjyk,

that is, each term has total degree m. Clearly Sm
2 is a subset of Pm

2 .
More generally, Sm

k is the space of degree-m homogeneous poly-
nomials in k variables — that is, linear combinations

∑
i1,...,ik≥0

i1+···+ik=m

ci1,...,ik xi1
1 · · · x

ik
k

of monomials with total degree m. Elements f ∈ Sm
k have the prop-

erty that fm(αx1, αx2, . . . , αxk) = αm fm(x1, x2, . . . , xk). (See exercise 3
below.)

1in the affine resp. projective plane. Later we will define algebraic curves in higher
dimensional projective spaces and products thereof, but the “most intrinsic” def-
inition of an algebraic curve as a 1-dimensional reduced scheme (some authors
require this to be irreducible and over an algebraically closed field as well) is prob-
ably something to learn only once you have a first course in algebraic geometry
under your belt.
2the field of definition, from which the cjk are taken, will depend on context; Sm

2 is
a vector space over that field.

21
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Given a real affine algebraic curve of degree d

C := {0 = f (x, y) = fd(x, y) + fd−1(x, y) + · · ·+ f0} ⊂ R2

with fd not identically zero, we would like to count its intersections
with a real line given parametrically by

L : t 7−→ (αt, βt)

(where α, β are real constants). These are just the solutions of

(2.1.2) 0 = fd(α, β)td + fd−1(α, β)td−1 + · · · f0.

Naively, we would like to get d points:

(2.1.3) #{C ∩ L} = d ??

Some issues arise . . .

Problem Solution

(a) R is not algebraically closed! pass to C2

(b) solutions “at infinity”! add a “line at infinity” to C2

(c) multiple roots! count intersections with multiplicity
(d) C might contain L! Uh-oh

Each “Problem” is an obstruction to (2.1.3), and the object of each
“Solution” is to remove the obstruction.

In a little more depth, (a) says that in spite of the fact that the
fi(α, β) ∈ R, roots of (2.1.2) can be non-real. So we had better con-
sider C and L as complex algebraic curves — take x, y ∈ C in the
definition of C and t ∈ C in the definition of L. Their dimensions
over R then, of course, double, and C ∩ L now contains the points
corresponding to non-real roots of (2.1.2).

Next, if we plug t = s−1 into (2.1.2) and multiply by sd, then it
becomes

(2.1.4) 0 = f0sd + f1(α, β)sd−1 + · · ·+ fd(α, β).

A “solution at ∞” to (2.1.2) is a solution at 0 to (2.1.4), which exists
if and only if fd(α, β) = 0. For this to be counted in C ∩ L, we must



2.1. ALGEBRAIC CURVES 23

add a line L∞ to C2 to get P2,3 the complex projective plane (which
we shall discuss in a moment). This adds a point to L “at ∞” corre-
sponding to s = 0, yielding a P1 (projective line), and adds points at
infinity to C (yielding a compact “projective” curve).

We know that to get d solutions out of a degree d polynomial
equation you have to count a twice repeated root as two solutions.
So to get d intersection points you will certainly have to count inter-
sections of C with L however many times the corresponding root of
(2.1.2) is repeated. The curious case is an m-times repeated root at in-
finity: via (2.1.4), this corresponds to fd(α, β) = · · · = fd−m+1(α, β) =

0. In that case, (2.1.2) is only in fact of degree d−m. One does have
to worry about these degenerate cases, but they will look completely
natural in projective coordinates.

Finally, if all f`(α, β) = 0, then C ⊃ L and we are in trouble —
there is no way around (d). We shall have to demand that plane
curves intersect “properly” (in points only), disallowing this possi-
bility, in order to make any statement about the number of intersec-
tion points.

2.1.5. EXAMPLE. Given a quintic curve C as in the following pic-
ture

L

8

C
2

8

(5,5)

L

C

(1,1)

(i,i)

the number of intersection points in R2 is only 2. But the number
of complex intersection points, counting multiplicities and intersec-
tions at infinity, is 5.

3called CP2 or P2
C in some books
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So . . . how does one go about adding a line (resp. point) at
infinity to C2 (resp. L)? First, visualize L as C

i

1
0

and think of all arrows as going off to the same point. Adding this
point gives the “1-point” compactification C ∪ {∞}, resulting in a
sphere

circleunit

8

1

0

i

This is an informal way of thinking of P1 in the following:

2.1.6. DEFINITION. Projective space Pn is the set of complex lines
through the origin 0 ∈ Cn+1.4 More precisely,

Pn :=

(
Cn+1\{0}

)〈
(z0,z1,...,zn)∼(αz0,αz1,...,αzn)

∀α∈C∗

〉
consists of nonzero vectors in Cn+1, modulo the equivalence relation
equating all vectors lying on a complex line. Elements are written
[z0 : z1 : · · · : zn].

4as will be proved in Chapter 5, one should really think of Pn as a complex mani-
fold (but we haven’t defined these yet). 0 denotes (0, 0, . . . , 0).
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For n = 1 this yields the projective line P1, which has the isomor-
phism

P1 ∼=−→ C∪ {∞}
[z0 : z1] 7−→ z1

z0
=: z

given by taking slope (of the line represented by [z0 : z1]). This map
is well-defined as [αz0 : αz1] 7→ αz1

αz0
= z1

z0
. The “honest topological

picture” of P1 is

circleunit

8
1

0

i

i−

−1

while the “schematic real picture” is

0

8

z ==

[1:0]
[0:1]

Next, setting n = 2 we have the projective plane P2, and the
isomorphism

(2.1.7)

P2 ∼=−→ (C×C) ∪P1

[z0 : z1 : z2]
if z0 6=07−→

(
z1
z0

, z2
z0

)
∈ C2

if z0=07−→ [z1 : z2] ∈ P1

expresses how P2 adds a line at infinity (the P1) to C2.
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For P2, the (rather bad, but standard) “schematic picture” is

[0:1:0]

[0:0:1]

[1:0:0]

all 3

P ’s
1

z =0

z =0
z =0

1

2

0

L  , i.e.8

While I’m not going to try to represent 4 real dimensions on paper,
here is a mostly honest topological depiction of the 3 P1’s:

z =0

z =0

z =0
1

2

0

2.1.8. REMARK. Equation (2.1.7) relates affine coordinates (on C2)
and projective coordinates (on P2). Instead of the {zi}, I will fre-
quently use [Z : X : Y] for a point in P2 and (asuming Z 6= 0)(

X
Z , Y

Z

)
=: (x, y) for the corresponding point in C2.

Also, a warning is in order: [0 : 0 : 0] is not a point in P2. With
homogeneous coordinates, some entry must be nonzero.

Returning to our degree d (and now complex) algebraic curve
C = { f (x, y) = 0} ∈ C2, what happens to it as we compactify C2 to
P2 as described above? To treat this, we first need to introduce the
main object of study of this course.
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Since [Z : X : Y] = [αZ : αX : αY], in order for a polynomial
equation F(Z, X, Y) = 0 to make sense projectively (i.e. in P2), we
must have

(2.1.9) F(Z, X, Y) = 0 =⇒ F(αZ, αX, αY) = 0 (∀α ∈ C∗).

This condition is guaranteed by homogeneity of F (cf. the property
in Definition 2.1). (In fact, as we shall see later it is equivalent to ho-
mogeneity of F.)

2.1.10. DEFINITION. A projective algebraic curve C ⊂ P2 of degree
d, is the zero set of a homogeneous polynomial F ∈ Sd

3.

Here, then, is a general procedure for going between affine and
projective curves:

(2.1.11) f (x, y) = 0 7−→ Zd f
(

X
Z

,
Y
Z

)
= 0

corresponds to taking the projective closure C̄ ⊂ P2 of a given affine
curve C ⊂ C2. Conversely, if the given C is already projective (de-
fined by F = 0), then

(2.1.12) F(Z, X, Y) = 0 7−→ F(1, x, y) = 0

“restricts” C to the affine curve C ∩C2. Given an affine curve, taking
closure then restricting gets you back to where you started.

2.1.13. EXAMPLE. Starting from the homogeneous cubic polyno-
mial F(Z, X, Y) = ZXY + 3Z2Y + 4Y3, the affinization is f (x, y) =

F(1, x, y) = xy + 3y + 4y3. Conversely, if we start from f (x, y) =

x3y− y2 + 2x, the projectivization is F(Z, X, Y) = Z4 f (X
Z , Y

Z ) = X3Y−
Y2Z2 + 2XZ3.

Take F, C to be as in Definition 2.1.10. If F = ∏ Fi (so that deg F =

∑ deg Fi), then writing Ci for the zero set of Fi, we have C = ∪Ci.

2.1.14. DEFINITION. We say that C is irreducible if and only if F
has no proper (deg ≥ 1) homogeneous factors.

Now let’s consider our intersection problem (2.1.3) once more,
in the complex projective setting. Referring to the discussion up to
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Example 2.1.5, if C and L have an m-fold intersection at infinity, then
the degree of the polynomial in (2.1.2) is d − m. The Fundamental
Theorem of Algebra then says that (2.1.2) has d − m complex roots
counted with multiplicity, and we define these to be the intersection
multiplicities for C and L in C2 as indicated in our discussion. We
have proved a baby version of Bezout’s theorem:

2.1.15. PROPOSITION. Let L ⊂ P2 be a (projective) line in P2, i.e. an
algebraic curve of degree one. A projective algebraic curve of degree d in P2

not containing L, meets L in d points counted with multiplicity.

In proving this result we did a tiny bit of complex analysis on
L, so were implicitly using its structure as a complex 1-manifold. In
general it is quite useful to be able to do analytic computations on
curves, but not all irreducible algebraic curves are complex mani-
folds (at least, without doing something to them called “normaliza-
tion”). The obstructions are called singularities and will be explored
in greater depth later. For now, we will just give a definition and a
few examples.

2.1.16. DEFINITION. A singularity or singular point of an affine al-
gebraic (plane) curve f (x, y) = 0 is a point in C2 where f , ∂ f

∂x , and
∂ f
∂y are all zero — that is, a point on the curve where ∂ f

∂x and ∂ f
∂y van-

ish. A singularity of a projective algebraic curve F(Z, X, Y) = 0 is a
point where F, ∂F

∂X , ∂F
∂Y , and ∂F

∂Z are all zero. A curve with one or more
singular points is called singular; a curve with none is called smooth.

2.1.17. EXAMPLE. Here are some local real (schematic) pictures of
plane curve singularities:

cusp ordinary ordinary 
triple pointdouble point
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An example of a cusp is the point [1 : 0 : 0] on X3 − Y2Z = 0 (or
(0, 0) on x3 = y2); the curve XY = 0 has an ODP (ordinary double
point, or “normal crossing”) at [1 : 0 : 0]:

X=0

Y=0

Now, this is just two P1’s (namely, X = 0 and Y = 0) touching at
one point. A more (though not completely) “topologcially honest”
picture of this is:

X=0

Y=0

which makes it apparent that an ODP is actually a “bi-conical singu-
larity”.

Before we pass to the “analytic” side of our story, there are 2 more
facts about homogeneous polynomials worth a quick mention. First,
the map Sd

3 → Pd
2 given by F(Z, X, Y) 7→ F(1, x, y) is an isomor-

phism, so dim(Sd
3) = dim(Pd

2 ) in particular. Second is the Euler
formula

(2.1.18)
N

∑
i=0

Zi
∂F
∂Zi

= d · F for F ∈ Sd
N+1

which will be used in later chapters (cf. Chapter 6 for a proof).
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2.2. Complex 1-manifolds

Recall from basic point-set topology that a topological space is a set
X together with a collection {UI}I∈Ω of “open sets” containing X,
the empty set, and all unions and all finite intersections of its mem-
bers. (Here Ω is some typically huge index set. A base for the topol-
ogy of X is a sub-collection of the {UI}I∈Ω which generates it under
taking unions, and X is said to be second countable if it has a count-
able base.) X is called Hausdorff if points can be separated: i.e. given
p and q, there exist disjoint open sets U and V containing p and q
respectively.

In topology, a homeomorphism is a continuous, 1-to-1, open5 map.
Given a point p ∈ X, we like open sets U 3 p that are homeomorphic
to Rn (or equivalently, an open ball in Rn) — these are called open
neighborhoods of p. If these always exist, we say X is locally home-
omorphic to Rn. A second countable, Hausdorff topological space
that is locally homeomorphic to Rn, is called a real n-manifold.

In the case n = 2, we are going to layer “complex analyticity”
onto this construction:

2.2.1. DEFINITION. A complex 1-manifold consists of
(i) a connected Hausdorff topological space M;6

(ii) an open cover {Uα} of M (this is a finite set of open sets taken
from amongst the {UI}, such that ∪αUα = M); and

(iii) mappings zα : Uα → C that are homeomorphisms onto their
image, such that the transition functions7

Φβα := zβ ◦ z−1
α : zα(Uαβ)→ zβ(Uαβ)

are biholomorphic (i.e., analytic isomorphisms).

5A map is open (resp. continuous) if the image (resp. preimage) of any open set
under the map is open.
6One can include second-countability here, or note that it comes for free by a deep
result in complex analysis (Radó’s theorem).
7If Uα and Uβ are distinct open sets in our cover, we write Uαβ := Uα ∩Uβ. Later

we will write Vα for zα(Uα) and Vβ
α for zα(Uαβ), so that Φβα goes from Vβ

α to Vα
β .
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U

U

Φ
βα

U
αβ

z

βz

α

α

β

The zα are called local coordinates, and the Φβα transition (or patching)
functions; the entire collection {zα}, {Φαβ} is called an analytic atlas.

The functions Φβα are key: M is an complex analytic manifold
because they are complex analytic. If in (iii) we replace C by Rn and
require the transition functions to be smooth (i.e., have continuous
partial derivatives of all orders), then M would have been a smooth
(or “differentiable”) real n-manifold instead.

If we think of the (complex analytic) transition functions in Defi-
nition 2.2.1 as maps from R2 to R2, then

Φ(

real
part︷︸︸︷
x ,

imag.
part︷︸︸︷
y ) = (

real
part︷ ︸︸ ︷

u(x, y),

imag.
part︷ ︸︸ ︷

v(x, y))

is smooth and u, v satisfy the Cauchy-Riemann equations. These may
be expressed in terms of the Jacobian matrix(

ux uy

vx vy

)
=

(
ux −vx

vx ux

)
,

which consequently has positive determinant: u2
x + v2

x (obviously ≥
0) cannot equal zero since Φ is biholomorphic. Therefore Φ preserves
orientation, so M is orientable as a real 2-manifold.8

8in fact, a matrix of the form
( A −B

B A

)
is a rotation times a dilation, hence preserves

angles – that is to say, under the assumption of the CR-equations, Φ is conformal. So
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2.2.2. EXAMPLE. C, C∗, H, P1, and C/Λ are (the simplest) exam-
ples of complex 1-manifolds. For the first three, producing an ana-
lytic atlas is trivial (since you only need one Uα), and we will do this
below for the latter two.

Now assume M is compact, that is, every open cover has a finite
subcover. (In fact, since a complex 1-manifold always admits a met-
ric, compactness is equivalent to every sequence of points having
a convergent subsequence. Clearly an = n has no limit in C but
an = [1 : n] = [ 1

n : 1] does limit to [0 : 1] in P1, which is com-
pact.) Then viewed over R, M is an orientable, compact, connected,
smooth 2-manifold. By a theorem in topology, this means that M is
homeomorphic to a sphere with g handles, and we say M has genus
g:

g=0 g=1 g=2

etc.

It is a fact that all g ≥ 0 occur for complex manifolds; we’ll show this
in a moment for g = 0, 1. To do complex analysis on M, you can use
the local coordinates, but for some purposes it is also convenient to
cut M into a simply connected region, e.g.

α

β

α

β

α

β

g=1

δ

α

β

α

β

γ

δ

γ

α
β

γδ

g=2

a complex 1-manifold is essentially a differentiable real 2-manifold with conformal
transition functions.
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Extrapolating from this, one sees that if you begin with a sphere with
g handles, the cut-open version is a polygon with 4g edges identified
in pairs. (The black points on the right-hand side are all identified.)
Using this9 we can do a quick computation of the Euler characteristic
of M:

(2.2.3) χM := faces− edges + vertices = 1− 2g + 1 = 2− 2g.

2.2.4. EXAMPLE. (g = 0) Let M := P1 with homogeneous coordi-
nates [X : Y]. Consider the open cover {U0, U1} of M given by:

U01

U
1

U
0

[0:1]="   "8

[1:0}="0"

M

That is, U0 = M\{[0 : 1]} and U1 = M\{[1 : 0]}. For local coordi-
nates, we take

z0 : U0 → C

[X : Y] 7→ Y
X

and
z1 : U1 → C

[X : Y] 7→ X
Y

.

Writing U01 := U0 ∩U1, we have z0(U01) = C∗ ⊂ C and z1(U01) =

C∗ ⊂ C. The transition function (which goes from z0(U01) to z1(U01)

by definition) is then

Φ10 : C∗ → C∗

u 7→ 1
u

.

9traditionally one would use the numbers of faces, edges, and vertices in a trian-
gulation of M, but using a polygonal decomposition like this is also OK
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2.2.5. EXAMPLE. (g = 1) Let λ1, λ2 ∈ C be linearly independent
over R. Then Λ := Z 〈λ1, λ2〉 = Zλ1 + Zλ2 is a lattice, and we set
M := C/Λ. (This means that z, z′ ∈ C give the same point in M if
and only if z− z′ ∈ Λ.) We endow M with local coordinates on the
neighborhoods shown

M covering by coordinate
neighborhoods

basically by using the coordinate on C (before quotienting by Λ),
and find that the transition functions Φij are all either the idenitity or
translation by some λ ∈ Λ. Topologically, M is a torus (cf. the g = 1
pictures above), which is evident from performing the identifications
on the sides of a fundamental region for C/Λ as shown.

2.3. Riemann surfaces

Traditionally, a Riemann surface M is defined to be a compact com-
plex 1-manifold obtained as the “existence domain” of an algebraic
(typically multivalued) function over P1. That isn’t the definition I’ll
use here, but I do want to explain the concept.

For example, given distinct complex numbers αi, the algebraic
function

F(z) :=
√

∏
2g+2
i=1 (z− αi)

on P1 can be made single-valued on a complex manifold M (of genus
g, it turns out) constructed as follows: On two copies of P1, cut iden-
tical nonintersecting slits from α2j−1 to α2j for j = 1, . . . , g + 1. Then
glue the two copies of P1 together on these slits, forming a set on
which F becomes single-valued; finally, endow this set with an ana-
lytic atlas to get a complex manifold M. This manifold has a distin-
guished morphism M π→ P1 presenting it as a finite branched cover
of the projective line. We won’t do this explicitly here — especially
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endowing it with an analytic atlas, since that is really a special case
of normalizing an algebraic curve (cf. §3.1).10

Instead, let’s visualize what a couple of “existence domains” for
algebraic functions look like, starting with

2.3.1. EXAMPLE. How should we think about the “Riemann sur-
face of (w =)z

1
3 over the unit disk”? This is some object fitting (as

“{z = w3}”) into the following picture:

1

2

3

e

e
i

2π

3
i

4π

3

1

{z=w }
3

π

112
3

w−disk

z−disk

To construct it, think about following z
1
3 around the disk once coun-

terclockwise: when you reach your starting point the function has
become e

2πi
3 times the branch of z

1
3 you started with; going around

once more, you get e
4πi

3 z
1
3 ; and one more time gets you back to your

original branch. So taking three unit disks, slitting them along the
positive reals, and gluing them as indicated

I II III

"e   z  ""e   z  ""z  "
1/3 1/3 1/3

3

4πι2πι
3

10It makes a very instructive exercise though, and the next example gives a hint
on how to do it.
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we get the “parking lot”

π

z−disk

{z=w }3

(The green segments are glued but I can’t draw in 4 dimensions.) An
easier way to visualize this “Riemann surface” is this: it’s just the
w-disk (and w is the local coordinate). The difficulty is in seeing the
w-disk “over” the z-disk.

2.3.2. EXAMPLE. Next, let’s construct an existence domain for

F(z) =
√
(z− a)(z− b)(z− c)

over P1. In a neighborhood of z0 = a, b, c this looks like the “Rie-
mann surface of (z − z0)

1
2 over a disk”, which is the same as the

construction we just did except with 2 unit disks instead of 3. In-
deed, going once around a, b, or c takes F 7→ −F; and furthermore,
because the degree of the polynomial under the square root is odd,
going once around ∞ does the same thing. Since

a b is equivalent to a b

going around two points at once gives no change. So taking two
P1’s and cutting and pasting them as indicated, we end up with a
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manifold of genus 1 on which F becomes well-defined:

α

α

β

β

β

a

b
c

a

b

c

c c

b b

a a

8

8

8 8

"+  f " "−  f "

"open" the
cuts and

join

α

β

P
1

(In the picture, α and β are called 1-cycles; there just there to make
the topology clear.) The same construction works if we replace F(z)
by
√
(z− a)(z− b)(z− c)(z− d), with d replacing ∞.

In fact, by a deep result (on existence of nonconstant meromor-
phic functions on complex 1-manifolds) any compact complex 1-
manifold is an “existence domain” of the sort we have just discussed:
they are equivalent objects in the end. The following is motivated by
this, and the desire to keep things simple:

2.3.3. DEFINITION. A Riemann surface is a compact complex 1-
manifold.

Exercises
(1) Take projective closures of {y2 = (x− 1)(x− 2)(x− 3)(x− 4)} =:

C and {x = 0} =: L in P2 (by finding the associated homoge-
neous equations), and determine all intersections and their mul-
tiplicities (give the projective coordinates of the points). What is
the sum of multiplicities?
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(2) Find the affine equation associated to Z3
0 + Z3

1 + Z3
2 = λZ0Z1Z2.

(This equation is homogeneous of degree 3 — λ is a scalar, not a
coordinate). Is the curve it defines is smooth for λ = 0? λ = 3?

(3) Let F be a polynomial in 3 variables. Prove that F(z0, z1, z2) =

0 =⇒ F(αz0, αz1, αz2) = 0 (∀ α ∈ C∗) forces F to be homoge-
neous (of some degree). [You will have to assume the following
result: given two polynomials f and g (in (z0, z1, z2)), with van-
ishing locus { f = 0} ⊆ {g = 0}, then f divides a power of g.
This is called Study’s lemma and will be proved later.] Also write
out the details for the (easier) converse.

(4) Show that the existence domain M of
√

∏
2g+2
i=1 (z− αi) is a com-

plex 1-manifold of genus g: (a) construct an atlas (what is the
local coordinate about a branch point z = αi, in view of Example
2.3.1?); then (b) working in analogy to Example 2.3.2, use the slits
as part of a triangulation of M and apply (2.2.3).

(5) As we’ll see in Chapter 8, irreducible complex algebraic curves
are connected. Suppose C ⊂ C2 is defined by a real polynomial
f ∈ R[x, y], and consider the real solution set C(R) = C ∩R2.
The potential (in fact, usual) failure of connectedness for C(R)

is yet another weirdness that afflicts real algebraic curves: for
instance, we can have an isolated point p ∈ R2 such that an open
disk B ⊂ R2 about p has B ∩ C(R) = {p}. (a) Give an example.
(b) Show that at any such point, C is singular.


