
CHAPTER 21

Abel’s theorem for elliptic curves

Given a divisor D = ∑ ni[pi] on an elliptic curve E, we can for-
mally compute the sum in the group law, ending up with a single
point on E. It seems of interest to ask if anything special is true if this
point is the origin O. In fact, assuming ∑ ni = 0, it will turn out that
this is true precisely if D is the divisor of a meromorphic function on
the curve. We begin by describing the statement of Abel’s theorem
for a curve of arbitrary genus (which does not have a group law),
to place the statement for genus one in a broader context. Then we
prove the genus-1 case, introducing theta functions along the way.

21.1. The Jacobian of an algebraic curve

Let M be a Riemann surface of genus g. We will need to accept
some facts in order to state Abel’s theorem for M. (These will be
returned to in later chapters, along with the proof of Abel.) It turns
out that the space of holomorphic 1-forms has dimension g, whilst
the (abelian) homology group of 1-cycles modulo boundaries (cf. §19.1
for definitions) has rank 2g. In terms of bases,

H1(M, Z) ∼= Z
=
γ1, . . . , γ2g

>
,

Ω1(M) ∼= C
=
ω1, . . . , ωg

>
.

21.1.1. REMARK. A visual “explanation” of the statement about
homology groups may be the best one:
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258 21. ABEL’S THEOREM FOR ELLIPTIC CURVES

Exercises (3)-(4) of Chapter 25 provide a way to write down the holo-
morphic forms on M, provided one believes that any Riemann sur-
face is the normalization of an algebraic curve C in P2 whose only
singularities (if any) are nodes. (This statement relies on the exis-
tence of nonconstant meromorphic functions on M, which is nontriv-
ial.) Since the genus g of M is (d−1)(d−2)

2 − δ (with d = deg(C), δ = #
of ODPs), it is enough to show that all meromorphic 1-forms are ra-
tional (cf. §25.1) and furthermore that holomorphic pullbacks of ratio-
nal 1-forms from P2 span a space of dimension (d−1

2 )− δ (cf. §25.2).
Just to get an idea of how this works, suppose C = {F(Z, X, Y) =

0} is smooth of degree d, and recall that Sm
3 denotes degree-m homo-

geneous polynomials in 3 variables, with dimension (m+2
2 ). If G is

a homogeneous polynomial of degree n, write g(x, y) = G(1, x, y)
(and similarly f (x, y) = F(1, x, y)). Then the meromorphic 1-form
on P2 which in affine coordinates takes the form g·dx

fy
, restricts to a

holomorphic 1-form on C precisely if1 n = d − 3. (This is equiv-
alent to saying deg(g) ≤ d − 3.) Hence,2 Ω1(C) has dimension
((d−3)+2

2 ) = (d−1
2 ) = (d−1)(d−2)

2 = g.

Anyhow, let γj ∈ H1(M, Z) be a basis element; associated to it is
a period vector

πj :=

%

&&'

´

γj
ω1
...

´

γj
ωg

(

))* ∈ Cg.

Together these form a g × 2g period matrix Π with R-linearly in-
dependent columns. (This isn’t obvious, and will be addressed in
§25.2.) Hence their columns generate (over Z) a 2g-lattice ΛM ⊂
Cg (∼= R2g).

Recall that if V is a vector space (say, over C) then the dual space
is the space of linear functions V∨ := Hom(V, C).

1The computation in the Ch. 25 exercises proving this is “ugly” but straightfor-
ward; Poincaré residues facilitate a conceptual and essentially 1-line proof (but at
the cost of more sophisticated machinery).
2putting off to §25.2 that this formula encompasses all rational holomorphic forms.
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21.1.2. DEF INITION. The Jacobian of M is the abelian group

J(M) :=

!
Ω1(M)

"∨

image {H1(M, Z)} ,

where the denominator means the linear functions on Ω1(M) ob-
tained by integrating ω ∈ Ω1(M) over 1-cycles. Evaluation of linear
functions against the basis {ω1, . . . , ωg} induces an isomorphism

J(M)
∼=−→ Cg

ΛM
;

that is, the Jacobian is a complex g-torus.

21.1.3. LEMMA. Any morphism ϕ : P1 → Cg/ΛM of complex mani-
folds is constant.

PROOF. Writing u1, . . . , ug for the coordinates on Cg, the g-torus
Cg/ΛM has g independent holomorphic 1-forms: du1, . . . , dug. Since
ϕ∗(dui) ∈ Ω1(P1) and Ω1(P1) = {0}, we have

0 = ϕ∗(dui) =
locally

d(ϕ∗ui)

which implies ϕ∗ui = ui ◦ ϕ (a priori only locally well-defined) is
constant for each i = 1, . . . , g. □

21.2. The Abel-Jacobi map

When is a given divisor D ∈ Div(M) of the form ( f ), for some
nontrivial meromorphic function f on M? Since deg(( f )) = 0 for
any f ∈ K(M)∗, it is clear that D must be of degree 0 — i.e. in the
kernel of

deg : Div(M) −→ Z

∑ ni[pi] +−→ ∑ ni.

So consider a divisor D in

Div0(M) := ker(deg).
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We may write

D = ∑
j

!
[qj]− [rj]

"
= ∂

#
∑j

−→rjqj

$

+ ,- .
=:Γ

where “∂” means topological boundary and −→rjqj is a C∞ path from rj

to qj.

21.2.1. DEF INITION. The Abel-Jacobi map

AJ : Div0(M) → J(M)

sends D (= ∂Γ) to
ˆ

Γ
= ∑

j

ˆ qj

rj

viewed as a functional on Ω1(M).

The first question that arises is whether this is even well-defined,
which in this case means independent of the choice of “1-chain” (sum
of paths) Γ. To check this, let ∂Γ = D = ∂Γ′. Then ∂(Γ − Γ′) = 0,
meaning that Γ− Γ′ is a 1-cycle hence represents a class in H1(M, Z).
Consequently,

´

Γ−Γ′ =
´

Γ −
´

Γ′

“belongs to the denominator of J(M)”. It’s even easier to check that
AJ is a homomorphism (of abelian groups), which is left to you.

Now suppose D = ( f ), and consider the family of divisors

Dt := f−1(t) ∈ Div(M),

parametrized by t ∈ P1. Then D = D0 − D∞, and the composition

P1 −→ Div0(M)
AJ−→ J(M)

sending
t +−→ D0 − Dt +−→ AJ(D0 − Dt)

is constant by Lemma 21.1.3, and zero at t = 0. Thus AJ(D) = 0, and
we observe that

AJ factors through Pic0(M) :=
Div0(M)

(K(M)∗)
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in a well-defined fashion. (The denominator means “divisors of mero-
morphic functions”, and the statement is simply that AJ kills these.)
Pic0(M) is called the Picard group of M.3

The next result will be proved in Chapter 31. Its surjectivity por-
tion is traditionally referred to as the Jacobi inversion theorem, while
Abel’s theorem is the injectivity portion.

21.2.2. THEOREM. [ABEL, 1826; JACOBI, 1835]

AJ : Pic0(M) → J(M)

is an isomorphism.

Leaving aside the surjectivity part, the meaning of the “well-
definedness + injectivity” of this map is that for D ∈ Div0(M),

D = ( f )
(for some f ∈ K(M)∗)

⇐⇒ AJ(D) ≡ 0 mod ΛM,

completely answering the question we asked at the outset. Note that
the forward implication ( =⇒ ) is just well-definedness, which is
completely proved. What is nontrivial is the injectivity/backward
implication, since you actually have to find some f having D as its
divisor!

21.2.3. EXAMPLE. We consider what this means in the genus-one
case, i.e. for M = E (the normalization of) an elliptic curve with flex
O. Let ω ∈ Ω1(E) be nonzero, and consider D ∈ Div0(E). We can
write D = ∑ ni[pi] with ∑ ni = 0, and

AJ
!
∑ ni[pi]

"
= AJ

!
∑ ni([pi]− [O])

"
= ∑ ni

ˆ pi

O
ω = ∑ niu(pi)

where u : (E,+) → (C/ΛE,+) is the Abel map. Here the right-hand
sum is taking place in C/ΛE, and we see right away that

AJ
!
∑ ni[pi]

"
= 0 ⇐⇒ ∑ niu(pi) ≡

ΛE
0.

3Technically, this is the “degree-zero part” of the Picard group; see §26.1.
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By Abel’s theorem (on the left) and the fact that u is an isomorphism
of groups (on the right), we have that

(21.2.4) ∑ ni[pi] = ( f )
for some f ∈ K(E)∗

⇐⇒ ∑ ni · pi = O
in the group law on E(C).

As above, the forward implication is immediate from the constancy
of morphisms from P1 to E (Lemma 21.1.3).

21.2.5. REMARK. Suppose M is smoothly embedded as an alge-
braic curve in Pn, meeting the hyperplane at infinity Z0 = 0 in a sin-
gle point O. Write C = M ∩ Cn and R = C[C] = C[z1, . . . , zn]/I(C)
for the coordinate ring, with fraction field F = C(C)∗. Then we have
Pic(C) := Div(C)

(C(C)∗) = Pic0(M) (cf. Exercise (6)).
Now associated to each point p ∈ C is an ideal Ip ⊂ M, compris-

ing functions vanishing at p. An effective divisor D = ∑i ni[pi] is one
with all ni ≥ 0, and this corresponds to an ideal ID := ∏i Ini

pi ⊂ R.
There exist fractional ideals – i.e. R-modules in F – which furnish
inverses I−1

p (cf. Exercise (6)), and using these we can represent ar-
bitrary divisors too. The principal fractional ideals f R ( f ∈ F) cor-
respond to divisors of rational functions. The Picard group of C is
thus presented as the quotient of the group of fractional ideals of R by the
group of principal fractional ideals.

If we take instead F = K to be an algebraic number field, with
R = OK its ring of integers, the “Picard” group of fractional mod-
ulo principal fractional ideals is known as the ideal class group of K.
What both cases have in common is that C[C] and OK are Dedekind
domains, for which being a PID is equivalent to being a UFD. Since
nontriviality of the “Picard” group in each case detects the existence
of nonprincipal ideals, it also detects the failure of unique factoriza-
tion in R. One consequence of Abel’s theorem is thus that C[C] is a
UFD if and only if C has genus zero.

21.3. Direct proof of Abel’s Theorem for genus one

In this section we will deduce a result equivalent to the backward
implication in (21.2.4), recasting it as an existence theorem for elliptic



21.3. DIRECT PROOF OF ABEL’S THEOREM FOR GENUS ONE 263

functions. It will be convenient to work with a period lattice of the
form Λ = Z 〈1, τ〉, τ ∈ H (upper half-plane):

0 1

τ 1+τ

τ+1

2

Any elliptic curve E is isomorphic to a C/Λ of this type, by rescaling
the 1-form (or equivalently, the coordinate on C).

21.3.1. THEOREM. Suppose mj ∈ Z and uj ∈ C satisfy ∑ mj = 0
and ∑ mjuj ≡ 0 mod Λ. Then, writing D := ∑ mj[uj] ∈ Div(C/Λ),
there exists g ∈ K(C/Λ) such that (g) = D. (You may think of g as a
Λ-periodic meromorphic function on C.)

PROOF. Introduce the theta function (on C)

θ(u) := ∑
n∈Z

eπi{n2τ+2nu}.

The sum converges uniformly on compact sets, hence defines an en-
tire function. (For u in a closed disk of radius M/2, and |n| > M+1

Im(τ)
,

the nth term has modulus bounded by e−2π|n|.) While θ is not Λ-
periodic, it has several nice properties:

(a) θ(−u) = θ(u) [this is clear]
(b) θ(u + 1) = θ(u) [see Exercise (1)]
(c) θ(u + τ) = e−2πi( τ

2+u)θ(u). To check this, write θ(u + τ)

= ∑
n∈Z

eπi{n2τ+2nu+2nτ} = ∑
n∈Z

eπi{(n+1)2τ+2(n+1)u−τ−2u}

which becomes, reindexing by m = n + 1,

= e−πiτ−2πiu ∑
m∈Z

eπi(m2τ+2mu)

as required.
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(d) θ has a simple (order 1) zero at τ+1
2 and nowhere else in the

fundamental domain F bounded by vertices 0, 1, τ, 1 + τ. (To
see that there is just a single simple zero in F, apply (b) and (c)
to reduce the integral of dlog(θ) = dθ

θ around the boundary ∂F

to
´ τ+1

τ d{2πi( τ
2 + u)} = 2πi. For the rest, see Exercise (2).)

Now consider

f (u) := ∏
j

θ

/
u − uj +

τ + 1
2

0mj

;

clearly f (u + 1) = f (u) by property (b); but also (using property (c))

f (u + τ)

f (u)
= ∏

j

%

'
θ
#I

u − uj +
#

τ+1
2

$J
+ τ

$

θ
#

u − uj +
τ+1

2

$

(

*
mj

= ∏
j

#
e−2πi(τ+ 1

2+u−uj)
$mj

= e−2πi(τ+ 1
2+u)∑ mj · e2πi ∑ mjuj .

By asssumption, ∑ mj = 0 and ∑ mjuj = M + Nτ, so the last expres-
sion equals e2πiNτ. The function

g(u) := e−2πiNu f (u)

will therefore satisfy g(u+ τ) = g(u) = g(u+ 1). So it is Λ-periodic,
and the definition of f together with property (d) makes it clear that
(g) = ∑ mj[uj]. □

Exercises
(1) Verify property (b) for the theta function above (§21.3).
(2) Finish the proof of property (d) for the theta function by comput-

ing 1
2πi
´

∂F u dlog(θ).
(3) Prove directly that K(C/Λ) ∼= C(℘,℘′) (i.e., Theorem 3.1.7(b)) as

follows: (a) Check that any Λ-periodic meromorphic function on
C can be written as f + g℘′, where f and g are even Λ-periodic
meromorphic functions. (b) Show that ℘(u)− ℘(u0) has simple
zeroes at ±u0 [resp. a double zero at u0] if 2u0 ∕≡ 0 [resp. ≡ 0]
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mod Λ (and no other zeroes in C/Λ). (c) Finish the proof by
showing that an even Λ-periodic meromorphic function f (u) can
be written as a product ∏i(℘(u)− ℘(ui))

mi .
(4) (a) Verify the claim that Pic(C) = Pic0(M) in Remark 21.2.5.

[Hint: what is the kernel of the restriction map from Pic(M) ↠
Pic(C)? (You may assume that C(C) ∼= K(M), which is dealt
with in §25.1.)] (b) Assuming there exists a function f ∈ K(M)∗

with ( f ) = −[p]− ∑m−1
i=1 [qi] + m[O], construct a fractional ideal

inverse to Ip (notation as in the Remark). (c) Using Abel’s theo-
rem, show that such a function exists in the genus one case.

(5) What does Abel’s theorem say if g = 0? Prove it!


