CHAPTER 21

Abel's theorem for elliptic curves

Given a divisor $D = \sum n_i [p_i]$ on an elliptic curve *E*, we can formally compute the sum in the group law, ending up with a single point on *E*. It seems of interest to ask if anything special is true if this point is the origin O. In fact, assuming $\sum n_i = 0$, it will turn out that this is true precisely if *D* is the divisor of a meromorphic function on the curve. We begin by describing the statement of Abel's theorem for a curve of arbitrary genus (which does not have a group law), to place the statement for genus one in a broader context. Then we prove the genus-1 case, introducing theta functions along the way.

21.1. The Jacobian of an algebraic curve

Let *M* be a Riemann surface of genus *g*. We will need to accept some facts in order to state Abel's theorem for *M*. (These will be returned to in later chapters, along with the proof of Abel.) It turns out that the space of holomorphic 1-forms has dimension *g*, whilst the (abelian) *homology group* of 1-cycles modulo boundaries (cf. §19.1 for definitions) has rank 2*g*. In terms of bases,

$$H_1(M,\mathbb{Z}) \cong \mathbb{Z} \langle \gamma_1, \dots, \gamma_{2g} \rangle,$$
$$\Omega^1(M) \cong \mathbb{C} \langle \omega_1, \dots, \omega_g \rangle.$$

21.1.1. REMARK. A visual "explanation" of the statement about homology groups may be the best one:

Exercises (3)-(4) of Chapter 25 provide a way to write down the holomorphic forms on M, provided one believes that any Riemann surface is the normalization of an algebraic curve C in \mathbb{P}^2 whose only singularities (if any) are nodes. (This statement relies on the existence of nonconstant meromorphic functions on M, which is nontrivial.) Since the genus g of M is $\frac{(d-1)(d-2)}{2} - \delta$ (with $d = \deg(C)$, $\delta = #$ of ODPs), it is enough to show that all meromorphic 1-forms are rational (cf. §25.1) and furthermore that *holomorphic* pullbacks of rational 1-forms from \mathbb{P}^2 span a space of dimension $\binom{d-1}{2} - \delta$ (cf. §25.2).

Just to get an idea of how this works, suppose $C = \{F(Z, X, Y) = 0\}$ is *smooth* of degree *d*, and recall that S_3^m denotes degree-*m* homogeneous polynomials in 3 variables, with dimension $\binom{m+2}{2}$. If *G* is a homogeneous polynomial of degree *n*, write g(x, y) = G(1, x, y) (and similarly f(x, y) = F(1, x, y)). Then the meromorphic 1-form on \mathbb{P}^2 which in affine coordinates takes the form $\frac{g \cdot dx}{f_y}$, restricts to a holomorphic 1-form on *C* precisely if n = d - 3. (This is equivalent to saying deg $(g) \le d - 3$.) Hence, $\Omega^1(C)$ has dimension $\binom{(d-3)+2}{2} = \binom{d-1}{2} = \frac{(d-1)(d-2)}{2} = g$.

Anyhow, let $\gamma_j \in H_1(M, \mathbb{Z})$ be a basis element; associated to it is a *period vector*

$$\pi_j := \begin{pmatrix} \int_{\gamma_j} \omega_1 \\ \vdots \\ \int_{\gamma_j} \omega_g \end{pmatrix} \in \mathbb{C}^g.$$

Together these form a $g \times 2g$ period matrix Π with \mathbb{R} -linearly independent columns. (This isn't obvious, and will be addressed in §25.2.) Hence their columns generate (over \mathbb{Z}) a 2*g*-lattice $\Lambda_M \subset \mathbb{C}^g (\cong \mathbb{R}^{2g})$.

Recall that if *V* is a vector space (say, over \mathbb{C}) then the dual space is the space of linear functions $V^{\vee} := \text{Hom}(V, \mathbb{C})$.

¹The computation in the Ch. 25 exercises proving this is "ugly" but straightforward; *Poincaré residues* facilitate a conceptual and essentially 1-line proof (but at the cost of more sophisticated machinery).

²putting off to §25.2 that this formula encompasses *all* rational holomorphic forms.

21.1.2. DEF NITION. The *Jacobian* of *M* is the abelian group

$$J(M) := \frac{\left(\Omega^1(M)\right)^{\vee}}{\text{image}\left\{H_1(M,\mathbb{Z})\right\}}$$

where the denominator means the linear functions on $\Omega^1(M)$ obtained by integrating $\omega \in \Omega^1(M)$ over 1-cycles. Evaluation of linear functions against the basis { $\omega_1, \ldots, \omega_g$ } induces an isomorphism

$$J(M) \stackrel{\cong}{\longrightarrow} \frac{\mathbb{C}^g}{\Lambda_M}$$
;

that is, the Jacobian is a complex *g*-torus.

21.1.3. LEMMA. Any morphism $\varphi \colon \mathbb{P}^1 \to \mathbb{C}^g / \Lambda_M$ of complex manifolds is constant.

PROOF. Writing u_1, \ldots, u_g for the coordinates on \mathbb{C}^g , the *g*-torus \mathbb{C}^g / Λ_M has *g* independent holomorphic 1-forms: du_1, \ldots, du_g . Since $\varphi^*(du_i) \in \Omega^1(\mathbb{P}^1)$ and $\Omega^1(\mathbb{P}^1) = \{0\}$, we have

$$0 = \varphi^*(du_i) \underset{\text{locally}}{=} d(\varphi^*u_i)$$

which implies $\varphi^* u_i = u_i \circ \varphi$ (*a priori* only locally well-defined) is *constant* for each i = 1, ..., g.

21.2. The Abel-Jacobi map

When is a given divisor $D \in \text{Div}(M)$ of the form (f), for some nontrivial meromorphic function f on M? Since deg((f)) = 0 for any $f \in \mathcal{K}(M)^*$, it is clear that D *must* be of degree 0 — i.e. in the kernel of

deg : Div
$$(M) \longrightarrow \mathbb{Z}$$

 $\sum n_i[p_i] \longmapsto \sum n_i$

So consider a divisor *D* in

$$\operatorname{Div}^0(M) := \operatorname{ker}(\operatorname{deg}).$$

We may write

$$D = \sum_{j} \left([q_j] - [r_j] \right) = \partial \underbrace{\left(\sum_{j} \overrightarrow{r_j q_j} \right)}_{=:\Gamma}$$

where " ∂ " means topological boundary and $\overrightarrow{r_jq_j}$ is a C^{∞} path from r_j to q_j .

21.2.1. DEF NITION. The *Abel-Jacobi map*

$$AJ: \operatorname{Div}^0(M) \to J(M)$$

sends $D (= \partial \Gamma)$ to

$$\int_{\Gamma} = \sum_{j} \int_{r_{j}}^{q_{j}}$$

viewed as a functional on
$$\Omega^1(M)$$
.

The first question that arises is whether this is even well-defined, which in this case means *independent of the choice of "1-chain" (sum of paths)* Γ . To check this, let $\partial\Gamma = D = \partial\Gamma'$. Then $\partial(\Gamma - \Gamma') = 0$, meaning that $\Gamma - \Gamma'$ is a 1-cycle hence represents a class in $H_1(M, \mathbb{Z})$. Consequently,

$$\int_{\Gamma-\Gamma'} = \int_{\Gamma} - \int_{\Gamma'}$$

"belongs to the denominator of J(M)". It's even easier to check that AJ is a homomorphism (of abelian groups), which is left to you.

Now suppose D = (f), and consider the family of divisors

$$D_t := f^{-1}(t) \in \operatorname{Div}(M),$$

parametrized by $t \in \mathbb{P}^1$. Then $D = D_0 - D_\infty$, and the composition

$$\mathbb{P}^1 \longrightarrow \operatorname{Div}^0(M) \xrightarrow{AJ} J(M)$$

sending

$$t\longmapsto D_0-D_t\longmapsto AJ(D_0-D_t)$$

is constant by Lemma 21.1.3, and *zero* at t = 0. Thus AJ(D) = 0, and we observe that

AJ factors through
$$\operatorname{Pic}^{0}(M) := \frac{\operatorname{Div}^{0}(M)}{(\mathcal{K}(M)^{*})}$$

in a well-defined fashion. (The denominator means "divisors of meromorphic functions", and the statement is simply that AJ kills these.) Pic⁰(M) is called the *Picard group* of M.³

The next result will be proved in Chapter 31. Its surjectivity portion is traditionally referred to as the *Jacobi inversion theorem*, while *Abel's theorem* is the injectivity portion.

21.2.2. Theorem. [Abel, 1826; Jacobi, 1835]
$$AJ: \operatorname{Pic}^0(M) \to J(M)$$

is an isomorphism.

Leaving aside the surjectivity part, the meaning of the "welldefinedness + injectivity" of this map is that for $D \in \text{Div}^0(M)$,

$$D = (f) \qquad \Longleftrightarrow \quad AJ(D) \equiv 0 \mod \Lambda_M,$$

(for some $f \in \mathcal{K}(M)^*$)

completely answering the question we asked at the outset. Note that the forward implication (\implies) is just well-definedness, which is completely proved. What is nontrivial is the injectivity/backward implication, since you actually have to find some *f* having *D* as its divisor!

21.2.3. EXAMPLE. We consider what this means in the genus-one case, i.e. for M = E (the normalization of) an elliptic curve with flex \mathcal{O} . Let $\omega \in \Omega^1(E)$ be nonzero, and consider $D \in \text{Div}^0(E)$. We can write $D = \sum n_i[p_i]$ with $\sum n_i = 0$, and

$$AJ\left(\sum n_i[p_i]\right) = AJ\left(\sum n_i([p_i] - [\mathcal{O}])\right) = \sum n_i \int_{\mathcal{O}}^{p_i} \omega = \sum n_i u(p_i)$$

where $u: (E, +) \to (\mathbb{C}/\Lambda_E, +)$ is the Abel map. Here the right-hand sum is taking place in \mathbb{C}/Λ_E , and we see right away that

$$AJ\left(\sum n_i[p_i]\right) = 0 \iff \sum n_i u(p_i) \underset{\Lambda_E}{\equiv} 0.$$

³Technically, this is the "degree-zero part" of the Picard group; see §26.1.

By Abel's theorem (on the left) and the fact that *u* is an isomorphism of groups (on the right), we have that

(21.2.4)
$$\sum n_i[p_i] = (f) \iff \sum n_i \cdot p_i = \mathcal{O}$$
for some $f \in \mathcal{K}(E)^*$ in the group law on $E(\mathbb{C})$

As above, the forward implication is immediate from the constancy of morphisms from \mathbb{P}^1 to *E* (Lemma 21.1.3).

21.2.5. REMARK. Suppose *M* is smoothly embedded as an algebraic curve in \mathbb{P}^n , meeting the hyperplane at infinity $Z_0 = 0$ in a single point \mathcal{O} . Write $C = M \cap \mathbb{C}^n$ and $R = \mathbb{C}[C] = \mathbb{C}[z_1, \ldots, z_n]/I(C)$ for the coordinate ring, with fraction field $F = \mathbb{C}(C)^*$. Then we have $\operatorname{Pic}(C) := \frac{\operatorname{Div}(C)}{(\mathbb{C}(C)^*)} = \operatorname{Pic}^0(M)$ (cf. Exercise (6)).

Now associated to each point $p \in C$ is an ideal $I_p \subset M$, comprising functions vanishing at p. An *effective* divisor $D = \sum_i n_i [p_i]$ is one with all $n_i \ge 0$, and this corresponds to an ideal $I_D := \prod_i I_{p_i}^{n_i} \subset R$. There exist *fractional ideals* – i.e. *R*-modules in F – which furnish inverses I_p^{-1} (cf. Exercise (6)), and using these we can represent arbitrary divisors too. The *principal* fractional ideals fR ($f \in F$) correspond to divisors of rational functions. The Picard group of C is thus presented as the *quotient of the group of fractional ideals of R by the group of principal fractional ideals*.

If we take instead F = K to be an algebraic number field, with $R = O_K$ its ring of integers, the "Picard" group of fractional modulo principal fractional ideals is known as the *ideal class group* of *K*. What both cases have in common is that $\mathbb{C}[C]$ and O_K are *Dedekind domains*, for which being a PID is equivalent to being a UFD. Since nontriviality of the "Picard" group in each case detects the existence of nonprincipal ideals, it also detects the failure of unique factorization in *R*. One consequence of Abel's theorem is thus that $\mathbb{C}[C]$ is a UFD if and only if *C* has genus zero.

21.3. Direct proof of Abel's Theorem for genus one

In this section we will deduce a result equivalent to the backward implication in (21.2.4), recasting it as an existence theorem for elliptic

263

functions. It will be convenient to work with a period lattice of the form $\Lambda = \mathbb{Z} \langle 1, \tau \rangle, \tau \in \mathfrak{H}$ (upper half-plane):

Any elliptic curve *E* is isomorphic to a \mathbb{C}/Λ of this type, by rescaling the 1-form (or equivalently, the coordinate on \mathbb{C}).

21.3.1. THEOREM. Suppose $m_j \in \mathbb{Z}$ and $u_j \in \mathbb{C}$ satisfy $\sum m_j = 0$ and $\sum m_j u_j \equiv 0 \mod \Lambda$. Then, writing $D := \sum m_j [u_j] \in \text{Div}(\mathbb{C}/\Lambda)$, there exists $g \in \mathcal{K}(\mathbb{C}/\Lambda)$ such that (g) = D. (You may think of g as a Λ -periodic meromorphic function on \mathbb{C} .)

PROOF. Introduce the *theta function* (on \mathbb{C})

$$\theta(u) := \sum_{n \in \mathbb{Z}} e^{\pi i \{n^2 \tau + 2nu\}}$$

The sum converges uniformly on compact sets, hence defines an entire function. (For *u* in a closed disk of radius M/2, and $|n| > \frac{M+1}{\text{Im}(\tau)}$, the *n*th term has modulus bounded by $e^{-2\pi|n|}$.) While θ is *not* Λ periodic, it has several nice properties:

(a) $\theta(-u) = \theta(u)$ [this is clear] (b) $\theta(u+1) = \theta(u)$ [see Exercise (1)] (c) $\theta(u+\tau) = e^{-2\pi i (\frac{\tau}{2}+u)} \theta(u)$. To check this, write $\theta(u+\tau)$ $= \sum_{n \in \mathbb{Z}} e^{\pi i \{n^2 \tau + 2nu + 2n\tau\}} = \sum_{n \in \mathbb{Z}} e^{\pi i \{(n+1)^2 \tau + 2(n+1)u - \tau - 2u\}}$ which becomes, reindexing by m = n + 1,

$$= e^{-\pi i \tau - 2\pi i u} \sum_{m \in \mathbb{Z}} e^{\pi i (m^2 \tau + 2mu)}$$

as required.

(d) θ has a simple (order 1) zero at $\frac{\tau+1}{2}$ and nowhere else in the fundamental domain \mathfrak{F} bounded by vertices $0, 1, \tau, 1 + \tau$. (To see that there is just a single simple zero in \mathfrak{F} , apply (b) and (c) to reduce the integral of $dlog(\theta) = \frac{d\theta}{\theta}$ around the boundary $\partial \mathfrak{F}$ to $\int_{\tau}^{\tau+1} d\{2\pi i(\frac{\tau}{2}+u)\} = 2\pi i$. For the rest, see Exercise (2).)

Now consider

$$f(u) := \prod_{j} \theta \left(u - u_j + \frac{\tau + 1}{2} \right)^{m_j};$$

clearly f(u + 1) = f(u) by property (b); but also (using property (c))

$$\frac{f(u+\tau)}{f(u)} = \prod_{j} \left(\frac{\theta\left(\left\{u-u_{j}+\left(\frac{\tau+1}{2}\right)\right\}+\tau\right)}{\theta\left(u-u_{j}+\frac{\tau+1}{2}\right)} \right)^{m_{j}}$$
$$= \prod_{j} \left(e^{-2\pi i\left(\tau+\frac{1}{2}+u-u_{j}\right)}\right)^{m_{j}}$$
$$= e^{-2\pi i\left(\tau+\frac{1}{2}+u\right)\sum m_{j}} \cdot e^{2\pi i\sum m_{j}u_{j}}.$$

By assumption, $\sum m_j = 0$ and $\sum m_j u_j = M + N\tau$, so the last expression equals $e^{2\pi i N\tau}$. The function

$$g(u) := e^{-2\pi i N u} f(u)$$

will therefore satisfy $g(u + \tau) = g(u) = g(u + 1)$. So it is Λ -periodic, and the definition of f together with property (d) makes it clear that $(g) = \sum m_j [u_j]$.

Exercises

- (1) Verify property (b) for the theta function above (§21.3).
- (2) Finish the proof of property (d) for the theta function by computing $\frac{1}{2\pi i} \int_{\partial \mathfrak{F}} u \operatorname{dlog}(\theta)$.
- (3) Prove directly that K(C/Λ) ≅ C(℘, ℘') (i.e., Theorem 3.1.7(b)) as follows: (a) Check that any Λ-periodic meromorphic function on C can be written as f + g℘', where f and g are *even* Λ-periodic meromorphic functions. (b) Show that ℘(u) ℘(u₀) has simple zeroes at ±u₀ [resp. a double zero at u₀] if 2u₀ ≠ 0 [resp. ≡ 0]

EXERCISES

mod Λ (and no other zeroes in \mathbb{C}/Λ). (c) Finish the proof by showing that an even Λ -periodic meromorphic function f(u) can be written as a product $\prod_i (\wp(u) - \wp(u_i))^{m_i}$.

- (4) (a) Verify the claim that $\operatorname{Pic}(C) = \operatorname{Pic}^{0}(M)$ in Remark 21.2.5. [Hint: what is the kernel of the restriction map from $\operatorname{Pic}(M) \twoheadrightarrow$ $\operatorname{Pic}(C)$? (You may assume that $\mathbb{C}(C) \cong \mathcal{K}(M)$, which is dealt with in §25.1.)] (b) Assuming there exists a function $f \in \mathcal{K}(M)^{*}$ with $(f) = -[p] - \sum_{i=1}^{m-1} [q_i] + m[\mathcal{O}]$, construct a fractional ideal inverse to I_p (notation as in the Remark). (c) Using Abel's theorem, show that such a function exists in the genus one case.
- (5) What does Abel's theorem say if g = 0? Prove it!