
CHAPTER 22

The Poncelet problem

First let’s recall the most elementary statement of the “porism”
from Chapter 1. One starts with two conics CR, DR in R2, which
for simplicity we can take to be two ellipses cut out by polynomials
fC, fD ∈ P2 with real coefficients:
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We asked in §1.3 whether there exists a closed polygon inscribed in
CR and circumscribed about DR. The result stated there, Theorem
1.3.1, said that if there is one then there is an infinite family. Our goal
in this chapter is not just to flesh out the sketch of proof given there
of this “porism”, but to actually provide a way of deciding for which
pairs there does exist a circuminscribed polygon.

A slight reformulation of the theorem is this: starting from some
point x0 on CR, draw a line segment tangent to DR, continue until it
hits CR again. Begin again at this new point, by drawing the other
line segment through it and tangent to DR:
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266 22. THE PONCELET PROBLEM

Iterating this construction, we may ask whether it ever closes up —
i.e. returns to its starting point. (We will not care whether the path
crosses itself.) What we will show is that the answer is independent
of the choice of starting point x0.

22.1. Proof of Theorem 1.3.1

Poncelet’s Theorem has nothing to do with C and D being el-
lipses, fC and fD being real polynomials, and so forth — it makes
sense more generally for pairs of conics in the complex projective
plane P2, and that is the context in which we view it for the proof.
Namely, let C = {FC(Z, X, Y) = 0}, D = {FD(Z, X, Y) = 0} be the
conics cut out by homogeneous degree-2 polynomials FC, FD ∈ S2.
If the latter have coefficients in R (not essential for what follows),
then the real points C(R), D(R) make sense and then CR, DR above
are just their intersections with affine space. Now, these affine real
points need not meet (as in the above picture), but by Bezout C and
D must meet in four points counted with multiplicity. We will carry
out our proof under the assumption that the multiplicities are all one, i.e.
C and D meet transversely and so |C ∩ D| = 4.

Consider the incidence correspondence

E := {(x, L) | x ∈ L} ⊂ C × Ď

where Ď ⊂ P̌2 is the dual curve consisting of lines tangent to D (at
any point). In §1.3 we defined pictorially two involutions ι1 : E → E
and ι2 : E → E . The idea is that each L ∈ Ď meets C in two points
(counted with multiplicity), and swapping those points yields ι1;
whereas each x ∈ C is in two lines tangent to D (“counted with mul-
tiplicity”), whose exchange yields ι2. Composing involutions gives
ȷ := ι2 ◦ ι1, which is no longer an involution and is the complex ge-
ometry analogue of the iteration described just above. If we pick a
starting “point” (x0, L0) ∈ E , then we are interested in whether

ȷn(x0, L0) = (x0, L0)

for some n ∈ N.
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Now the projection

π : E → C(∼= P1)

(x, L) +→ x

has

• mapping degree 2: there exist two lines L, L′ tangent to D through
a general point x ∈ C

C

D

x

• 4 ramification points (each of order two): namely, the points of E
fixed by the involution ι2

π

x

ι2

C

In particular, the ramification points of π identify with the points
of C ∩ D, since through each of these there is a unique tangent to D
(rather than two):

C

D

L

x



268 22. THE PONCELET PROBLEM

By the Riemann-Hurwitz formula (for π),

χE = d · χC − r = 2 · 2 − 4 = 0.

This implies E is elliptic, and so has an Abel map u mapping it iso-
morphically to a 1-torus C/Λ (where Λ depends on1 E hence ulti-
mately on C and D).

Alternatively, we could have carried out this same computation
using π̌ : E → Ď (sending (x, L) +→ L), whose ramification points (in
E ) are the fixed points of ι1 and hence identify with bitangents:
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There are four of these since Č and Ď are conics in P̌2 hence have
|Č ∩ Ď| = 4.

Now consider an arbitrary involution I of C/Λ, where the coor-
dinate on C is denoted u. Any automorphism of C/Λ (in particular
I) takes the form u +→ au + b by Exercise (5) of Chapter 14, and
squaring this gives

u +−→ au + b +−→ a(au + b) + b = a2u + b(a + 1).

If this is to be the identity, we must either have (i) a = 1 and b ∈ Λ/2,
or (ii) a = −1 and b ∈ C arbitrary. Case (i) has no fixed points as it is
a translation by a 2-torsion point.

By abuse of notation2 we will think of ι1, ι2, ȷ as automorphisms
of C/Λ. Since ι1 and ι2 are involutions of C/Λ with fixed points,

1To define the Abel map you also have to choose a holomorphic 1-form on E ; this
affects the scaling of the lattice but not its isomorphism class.
2Strictly speaking, one should write u ◦ ι1 ◦ u−1 for the involution of C/Λ corre-
sponding to ι1 on E .
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they belong to case (ii):

ι1(u) ≡ b1 − u , ι2(u) ≡ b2 − u (mod Λ).

Therefore

(22.1.1) ȷ(u) = ι2(ι1(u)) ≡ b2 − (b1 − u) = u + (b2 − b1)+ ,- .
=:β

,

i.e. ȷ is a translation on C/Λ.
Write u0 for the image of (x0, L0) under the Abel map. Clearly

ȷn(x0, L0) = (x0, L0) iff ȷn(u0) ≡ u0 (mod Λ). But ȷn(u0) = u0 + nβ,
which ≡ u0 iff nβ ≡ 0, i.e. nβ ∈ Λ. We conclude that the Poncelet
construction (starting from (x0, L0)) closes up at the nth iteration if and
only if β is n-torsion relative to the lattice. Since β depends only on ȷ,
this has nothing to do with the choice of (x0, L0). Q.E.D.

22.2. Explicit solution of the Poncelet problem

The flexes are the preferred choices of origin for the group law on
a cubic plane curve. On the incidence-correspondence elliptic curve
E , it turns out that the best choice for O is one of the fixed points of
ι2 (the four (x, L) with x ∈ C ∩ D). Writing C ∩ D = {p1, p2, p3, p∞},
we set OE := (p∞, L∞) ∈ E .
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Here (e, Le) is the first point in the “Poncelet iteration” applied to
this “origin”, i.e. ȷ(O).
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Clearly β = u((e, Le)) in (22.1.1), with u : E → C/Λ the usual
Abel isomorphism. The question of whether ȷn is the identity can be
restated in terms of the (unique) group law on E with origin O:

(22.2.1) Is (e, Le) an N-torsion point?

The approach we take to its solution in this section is work of CAY-
LEY as presented in the nice expository article [P. Griffiths and J. Har-
ris, On Cayley’s explicit solution to Poncelet’s porism, L’Enseignement
Math. 24 (1978), 31-40.].

A family of conics. Consider the collection of conic curves

Dt := {p ∈ P2 | tFC(p) + FD(p) = 0}

depending on t ∈ P1, with D∞ = C and D0 = D. Each Dt contains
p1, p2, p3, p∞ since FC and FD both vanish at these points. For each
t ∈ P1, let ℓt := Tp∞ Dt and define qt by ℓt ∩ C =: p∞ + qt. Note that
q∞ = p∞ (double intersection) and q0 = e (by the last picture).

Recall that the equation of a conic may always be written

t p.M.p = 0 , M a symmetric 3x3 matrix;

the conic is singular if and only if det M = 0. Write MC, MD for the
matrices corresponding to C, D, so that tMC + MD corresponds to
Dt. Those t for which Dt is singular, are then just the ti in

(22.2.2) det (tMC + MD) = κ(t − t1)(t − t2)(t − t3).

There are three singular conics through the {pi}i=1,2,3,∞:
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and we may order the ti (as shown) to have qti = pi for i = 1, 2, 3.
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Thus we have constructed a morphism

P1 −→ C

t +−→ qt
(22.2.3)

which sends 0 +→ e, ∞ +→ p∞, and ti +→ pi (i = 1, 2, 3). That it is an
isomorphism, hence may be viewed as the usual “normalization by
stereographic projection”, is checked in Exercise (3).

Since E was already a double cover of C branched at p1, p2, p3, p∞,
(22.2.3) exhibits E as a double-cover of P1 branched at t1, t2, t3, ∞ —
i.e. the “existence domain” (cf. §2.3) of

√
(22.2.2), which is to say the

Riemann surface

(22.2.4)
I

s2 = det(tMC + MD)
J
=: E.

The point (e, Le) on E corresponds to a point over t = 0 on E; call
this ε. (Moreover, OE ∈ E corresponds to [0 : 0 : 1] =: O ∈ E, as it
should.)

Summarizing everything in a picture:
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Our main question (22.2.1) becomes:

Is ε N-torsion on E?
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Now t1 + t2 + t3 may not be zero and we are lacking a factor of 4, so
E is not quite in Weierstrass form. But it is easy to see that we have a
normalization

P : C/Λ
∼=−→ E

given by

u +−→
/
℘(u) + ∑ ti

3
,
℘′(u)

2κ−
1
2

0
.

Clearly this sends 0 +→ O; define u0 ∈ C/Λ to be the point sent to ε.
The question is now:

Is u0 N-torsion on C/Λ?

“Normal” elliptic curves and a “multiple addition” theorem.
Put uj := u0 + ∆j, where ∆j ∈ C. Abel’s theorem implies

22.2.5. PROPOSITION. There exists a Λ-periodic meromorphic func-
tion F with order-N pole at 0 and simple zeroes at u1, . . . , uN, if and only
if u1 + · · ·+ uN ≡ 0 (mod Λ).

What we are really after here is the vector space V of meromor-
phic functions on E with at worst an order-N pole at O (and no other
poles). There are N − 1 degrees of freedom coming from pushing
around the {uj} (while keeping ∑ uj ≡ 0) and one degree of free-
dom from multiplying the function by a constant. So dim V = N; let
{ f1, f2, . . . , fN} (with f1 constant) be a basis, and define

ϕN : E −→ PN−1
(coords.

w1,...,wN)
by

([1 : t : s] =:) z +−→ [ f1(z) : · · · : fN(z)].

22.2.6. DEF INITION. The image of ϕN, denoted EN, is called a
normal elliptic curve of degree N. (Note that E3 is essentially E —
take f1, f2, f3 to be 1, t, s.)

For ∑ uj ≡ 0, there exists a function F on EN with zeroes at
ϕN(P(uj)), and order N pole at ϕN(O). Now the “hyperplane at
infinity” {w1 = 0} ⊂ PN−1 intersects EN only at ϕN(O) (with mul-
tiplicity N, cf. Exercise (4)). If written as the pullback to EN of a
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rational function, it follows that F has “denominator” w1; the nu-
merator must then also be a homogeneous linear form H ∈ S1

N, i.e.

F = H(w)
w1

???
EN

. It follows that the ϕN(P(uj)) all lie on {H = 0} ⊂

PN−1, and so

(22.2.7) 0 = det[

coords. of
ϕN(P(uj))- .+ ,
fi(P+,-.
=:Fi

(uj))].

Conversely if this is satisfied then the ϕN(P(uj)) lie on a hyperplane

{H = 0}; one writes down the function H(w)
w1

???
EN

and computes its

divisor ∑N
j=1[uj]− N[0], and concludes (by Abel) that ∑ uj ≡ 0.

We can push this computation further. Expand Fi(u0 + ∆j) =

Fi(u0) + F′
i (u0)∆j + · · ·+

F(N−1)
i (u0)

(N − 1)!
∆N−1

j + ∆N
j ( · · · ) ,

then apply multilinearity of the determinant to expand the RHS of
(22.2.7):3

0 = const.×∏
k>ℓ

(∆k −∆ℓ)×det
V

F(j−1)
i (u0)

W
+

%

&'
terms of higher

homog. degree

in the {∆j}

(

)* .

Dividing by ∏k>ℓ(∆k − ∆ℓ) and taking the limit as all ∆j → 0 (i.e. all
uj → u0), this becomes

(22.2.8) 0 = det
V

F(j−1)
i (u0)

W
i = 1, . . . , N
j = 1, . . . , N

.

The determinant on the RHS of (22.2.8) is called the Wronskian of
ϕN ◦ P . Notice that in the limit ∑N

j=1 uj ≡ 0 becomes Nu0 ≡ 0; so
this last condition is equivalent to (22.2.8)!

22.2.9. EXAMPLE. Here is what the above calculation (using mul-
tilinearity of the determinant) looks like for N = 2, ignoring terms

3Note: “higher homog. degree in the {∆j}” means higher than ∏k>ℓ(∆k − ∆ℓ).
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of degree higher than 1 in the {∆j}:
?????

F1 + ∆1F′
1 F1 + ∆2F′

1
F2 + ∆1F′

2 F2 + ∆2F′
2

????? =

?????
F1 + ∆1F′

1 (∆2 − ∆1)F′
1

F2 + ∆1F′
2 (∆2 − ∆1)F′

2

?????

=

?????
F1 (∆2 − ∆1)F′

1
F2 (∆2 − ∆1)F′

2

????? = (∆2 − ∆1)

?????
F1 F′

1
F2 F′

2

????? .

Using the chain rule and again multilinearity of “det”, one finds
that the vanishing of the Wronskian is independent of the choice of
local coordinate on E. So we can replace u by t (and hence F by f ),
which yields our “multiple addition theorem”:

22.2.10. THEOREM. u0 is N-torsion in C/Λ (and the Poncelet itera-
tion closes up at the Nth step) if and only if

(22.2.11) det
V

f (j−1)
i (0)

W
i = 1, . . . , N
j = 1, . . . , N

= 0.

22.2.12. REMARK. The meaning of f (j−1)
i (0) probably requires ex-

planation: first, we are viewing f locally as a function of t (rather
than of [1 : t : s] =: z on E), and the (j − 1)st derivative is (total de-
rivative) with respect to t. The “0” just means t is set to 0 at the end;
this is because we are evaluating at ε (i.e. u0), which has coordinates
[(t, s) =] (0, s0).

Application in the case N odd. Obviously we can’t compute the
Wronskian (22.2.11) unless we know the fi.

Take N = 2m + 1. Then for f1, . . . , fm+1; fm+2, . . . , f2m we may
choose

1, t, . . . , tm; s, st, . . . , stm−1.

These have order of pole at 0

0, 2, . . . , 2m; 3, 5, . . . , 2m + 1.
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The determinant in (22.2.11) is then (using that dj−1ti−1

dtj−1

???
0
= 0 unless

j = i)
?????????????????

1 0 0 · · · 0
. . . ... . . . ...

0 m! 0 · · · 0

· · · ∗ dm+1s
dtm+1

???
ε

· · · d2ms
dt2m

???
ε

... . . . ...
... . . . ...

· · · ∗ dm+1(stm−1)
dtm+1

???
(0,ε)

· · · d2m(stm−1)
dt2m

???
(0,ε)

?????????????????

.

Writing s = s(t) =
:

det(tMC + MD) = A0 + A1t+ A2t2 + · · · (here
A0 = s0), this becomes a nonzero constant times

(22.2.13)

???????

Am+1 · · · A2m
... . . . ...

A2 · · · Am+1

???????
.

We conclude that there is a circuminscribed (2m+ 1)-gon (and hence
a family of such) for the pair C, D iff (22.2.13) vanishes.

22.2.14. EXAMPLE. We work out the case N = 3, i.e m = 1. The
determinant (22.2.13) is just A2, so we can get a “Poncelet triangle”
⇐⇒ A2 = 0. Writing Ti =

1
ti

, calculate

s =
9

det(tMC + MD) =
9

κ ∏3
i=1(t − ti)

= C
3

∏
i=1

\
1 − t

ti
= C

3

∏
i=1

7
1 − Ti

2
t −

T2
i

8
t2 − · · ·

8

=⇒ A2

C
= −1

8

3

∑
i=1

T2
i +

1
4
(T1T2 + T2T3 + T1T3) .

If T1 = 1, solving a quadratic equation we find

A2 = 0 ⇐⇒ T2 =
(1 + T)2

4
, T3 =

(1 − T)2

4
for some T ⇐⇒

equation of E reads s2 = κ(t − 1)
/

t − 4
(1 + T)2

0/
t − 4

(1 − T)2

0
.
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If we take

MD =

%

&&'

−4
(1+T)2 0 0

0 −4
(1−T)2 0

0 0 1

(

))* , MC =

%

&'
1 0 0
0 1 0
0 0 −1

(

)*

corresponding to

C =

M
4x2

(1 + T)2 +
4y2

(1 − T)2 = 1
N

, D =
I

x2 + y2 = 1
J

,

then κ = −1 and indeed

det (tMC + MD) =

/
t − 4

(1 + T)2

0/
t − 4

(1 − T)2

0
(1 − t) .

This recovers Example 1.3.4(b) from the beginning of the course! It’s
easy to draw one triangle, but seems quite nontrivial that you get
one independent of the starting point.

22.3. Elliptic billards

Returning to the “real” world, let CR ⊂ R2 be an ellipse with
foci F1 and F2. (CR consists of all points in R2, the sum of whose
distances from F1 and F2 is a fixed constant.) We imagine that CR

is the boundary of a pool table (frictionless, of course!). A billiard
trajectory for CR is a sequence of pairs (xi, Li)i≥0 with xi, xi+1 ∈ C ∩
Li and where Li−1, Li make equal angles with Txi CR

x
i

L
i−1i

L

x

x
i+1

i−1

— i.e. one has “equality of angles of incidence and reflection”.
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If DR is another conic (ellipse or hyperbola) then a (real) Poncelet
trajectory for (CR, DR) is a sequence of pairs (xi, Li)i≥0 with xi, xi+1 ∈
C ∩ Li and Li tangent to DR.

22.3.1. THEOREM. [L. FLATTO, 2003] (a) Assume DR is confocal
with4 CR. Then the (real) Poncelet trajectories are billiard trajectories with
respect to CR.

(b) Conversely, any billiard trajectory for CR not passing through F1 or
F2 and not along the minor axis, is a Poncelet trajectory for CR and some
DR confocal with CR.

We will prove only (a); Flatto does (b) in Appendix E of his book
[L. Flatto, “Poncelet’s Theorem,” AMS, 2009]. At any rate, the two
proofs are very similar.

22.3.2. REMARK. It’s worth pointing out right away that given
(x0, L0) (L0 not containing F1 or F2, and not the minor axis), there is
a unique conic DR confocal with CR and tangent to L0. If L0 passes
between F1 and F2, DR is a hyperbola; otherwise, it’s an ellipse. One
determines this DR, and then from

:
det(tMC + MD) obtains infor-

mation (as in §22.2) on whether the Poncelet trajectory closes up. By
the Theorem, this is also the billiard trajectory! You’ll use this to do
a computation in Exercise (2) below. But I should emphasize that if
you change (x0, L0) (i.e. the choice of billiard trajectory), you have to
change the choice of DR accordingly.

PROOF OF 22.3.1(a). In what follows we will write, given p, q
distinct points in R2, pq for the segment and |pq| for its length.

We begin with a general principle, for a conic QR with foci F1, F2.
Given p0 ∈ QR, let L := Tp0 QR and denote by F′

2 the reflection of F2

in L as in the picture:

4That is, F1 and F2 are the foci of DR. If DR is a hyperbola, this just means that the
difference of distances from its points to F1 and F2 must remain constant.
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Q

F1 2
F

F’
2

p

R

0

L

Set β := |F1p0|+ |p0F2| and note that by the definition of ellipse,

|F1q|+ |qF2| = β (∀q ∈ QR).

If p ∈ L\{p0}, |F1p| + |pF′
2| = |F1p| + |pF2| exceeds β (cf. Exercise

(5)), meaning that taking p = p0 minimizes |F1p|+ |pF′
2|. It follows

that

(22.3.3) F1p0 ∪ p0F′
2 = F1F′

2.

Now let CR, DR be confocal — assume that DR is an ellipse. Ap-
plying the principle that (22.3.3) holds for the above construction,
leads to a picture
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in which the solid black lines are part of a Poncelet iteration and we
must show θ1 = θ2 (so that it is a billiard trajectory). Reflection in
TpCR (dotted black) is denoted by one prime, reflection in solid black
lines by two primes.

By definition of ellipse, F1A + AF2 = F1B + BF2, which implies

|F′′
1 F2| = |F1F′′

2 |.

From there it is clear that the triangles F′′
1 pF2 and F1pF′′

2 are rotations
of each other (through p), so that α + 2η1 = α + 2η2 ( =⇒ η1 = η2).
It is obvious from the picture that θ1 + η1 = θ2 + η2, and so we indeed
conclude that θ1 = θ2. □

Exercises
(1) Consider the pair of conics C, D from Exercise (2) of Chapter 1

once more — but in the following form: write

MC =

%

&'
1 0 0
0 1 0
0 0 −1

(

)* , MD =

%

&'
1 0 0
0 1 0
0 0 −r2

(

)*

and use these to define quadratic forms by e.g.

QC(X, Y, Z) = ( X Y Z )
# 1 0 0

0 1 0
0 0 −1

$ # X
Y
Z

$
= X2 + Y2 − Z2

So QC = 0 defines C and QD = 0 defines D as conics in P2.
Working in homogeneous coordinates [V : T : U], define an el-
liptic curve by

U2V = det (T · MC + V · MD) .

In affine coordinates, this is u2 = det(t · MC + MD), where t = T
V ,

u = U
V . This is the general prescription for the elliptic curve E

arising in the Poncelet construction, exactly as above. All you
have to show is that in the present situation, with MC and MD

as given, the elliptic curve is singular. It’s practically a one-line
problem, and you may use the affine setup. But now you are in
a position to see “why” the curve being singular should make
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the Poncelet problem easier, and even to see “why” (from the ab-
stract perspective) the solution involved trigonometric functions.

(2) Let a > b > 0 and

CR =

M
x2

a2 +
y2

b2 = 1
N

;

it has foci (±
√

a2 − b2 , 0). We plan to shoot our pool ball ver-
tically along the line (L0 =) {x = c}, where 0 < c < a (and
c ∕=

√
a2 − b2). For what value of c does the resulting billiard

trajectory yield a triangle? [Hint: the conics confocal with CR are

all of the form
I

x2

a2−λ
+ y2

b2−λ
= 1

J
. Also: while straightforward,

this is not a 1-line computation!]
(3) Prove that the map (22.2.3) from P1 → C has degree 1.
(4) Show that the normal elliptic curve EN meets {w1 = 0} with

multiplicity N.
(5) Verify the claim just above (22.3.3) that |F1p|+ |pF2| > |F1p0|+

|p0F2|, and explain why (22.3.3) implies θ1 + η1 = θ2 + η2.


