
CHAPTER 23

Periods of families of elliptic curves

The periods of an elliptic curve E ⊂ P2 are simply elements of the
period lattice ΛE = Z〈

´

α ω,
´

β ω〉, where α, β are 1-cycles generat-
ing H1(E, Z) and ω ∈ Ω1(E) is some canonically chosen generator.
(For instance, if E is defined over Q, then ω should be the restric-
tion of a rational differential 1-form on P2 defined over Q.) If E is
taken to vary with respect to a parameter t ∈ P1, the periods give in-
teresting multivalued transcendental functions (e.g. hypergeometric
functions) which are related to modular forms.

In this chapter we explore (via examples) 2 different approaches
to computing “period functions” of this sort — the “Euler integral”
method and the “Picard-Fuchs” method. The first of these is just
a way of computing the integral using Laurent polynomials; the
second derives a homogeneous linear ordinary differential equation
satisfied by the periods, which yields a recurrence relation for their
power-series coefficients. Actually, both methods yield power series
at first but one can sometimes recognize what functions they are the
power series of. This may sound like complex function theory, but
in fact the power series coefficients (esp. when related to modular
forms) can have arithmetic meaning, as we shall see in the next chap-
ter; in the context of mirror symmetry (one of several interfaces be-
tween algebraic geometry and string theory), power series derived
from periods are related to counting curves on threefolds.

Sections §23.1 and §23.3 will have a bit of overlap with §19.1.

23.1. Holomorphic 1-forms on a smooth cubic ⊂ P2

Let F ∈ S3 define a smooth curve E = {F(Z0, Z1, Z2) = 0}; by the
genus formula g = (3−1)(3−2)

2 = 1, so that E is elliptic.
283



284 23. PERIODS OF FAMILIES OF ELLIPTIC CURVES

23.1.1. EXAMPLE. F = Z0Z1Z2 − t(Z3
0 + Z3

1 + Z3
2), for any t ∈

P1\{0, 1
3 , ζ3

3 , ζ2
3

3 } (ζ3 = e
2πi

3 ).

For the affine forms of the equation we shall use the following
notation:

L
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L
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L
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• on P2\L0, the coordinates are x = Z1
Z0

, y = Z2
Z0

, and equation is
f (x, y) := 1

Z3
0
F(Z0, Z1, Z2);

• on P2\L2, the coordinates are u = Z0
Z2

, v = Z1
Z2

, and equation is
g(u, v) := 1

Z3
2
F(Z0, Z1, Z2);

• the third neighborhood is left to you;
• on P2\L0 ∪ L2, we have u = 1

y , v = x
y ; y = 1

u , x = u
v ; and f (x, y) =

y3g
#

1
y , x

y

$
.

Now define a form ω on E by

dx
fy

????
E\(L0∪VT)

= −dy
fx

????
E\(L0∪HT)

=
du
gv

????
E\(L2∪HT)

= −dv
gu

????
E\(L2∪VT)

= · · ·

where

• the notation E\(L0 ∪ VT) means E minus those points where E
intersects L0 or has a vertical tangent line (similarly, HT means
“horizontal tangent”);

• equality of any two differentials above is meant in the sense of
“where both are defined”;

• for example: on E, f = 0 =⇒ 0 = d f = fxdx + fydy =⇒
dx
fy
= − dy

fx
where ( f = 0 and) fx, fy ∕= 0;

• the “· · · ” means that the third neighborhood stuff is left to you.

Now consider the domains of the first two expressions: since fx and
fy do not simultaneously vanish (E is smooth!), {E\(L0 ∩ VT)} ∪
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{E\(L0 ∩HT)} is all of E\L0. So the 6 different domains of definition
glue to give (E\L0) ∪ (E\L1) ∪ (E\L2), which is all of E. Moreover,
dx
fy

???
E\(L0∪VT)

etc. are all holomorphic where they are defined. We

conclude that ω ∈ Ω1(E).
By Poincaré-Hopf, deg((ω)) = 2g − 2 = 2 − 2 = 0, and so ω’s

lack of poles implies it has no zeroes either. Any other ω′ ∈ Ω1(E)
has ω′

ω ∈ O(E), and then by Liouville ω′ is a constant multiple of ω.
So Ω1(E) has dimension 1, and ω spans it.

23.2. Period of a family of cubic curves (Euler integral method)

Now consider the Hesse family Et of elliptic curves, already given
in Example 23.1.1, with affine form

f (x, y) = xy − t(x3 + y3 + 1) = 0, t ∈ C.

(For the four values of t excluded in the example, Et is singular hence
not an elliptic curve. I won’t write ft because the subscript is re-
served here for partial derivatives.) An alternate form of the equa-
tion, valid on C∗ × C∗, is

1 − t
/

x3 + y3 + 1
xy

0

+ ,- .
=:ϕ(x,y)

= 0,

where ϕ belongs to the ring of Laurent polynomials C[x, x−1, y, y−1].
From the last section, we have the family of holomorphic 1-forms

ωt :=
dx
fy

????
Et

∈ Ω1(Et).

To obtain a family of 1-cycles, notice that {|x|=|y|=1} ∩ Et is empty
for |t| < 1

3 , since |ϕ(x, y)| < 3 for x, y in the unit circle. Indeed,

γt := {|x| = 1, |y| ≤ 1} ∩ Et

has this empty set as its boundary ∂γt; and so we would like to com-
pute the period

P(t) :=
ˆ

γt

ωt
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as a function of t, on the open disk |t| < 1
3 .

Now since H1(Et, Z) has rank 2, there is a complementary 1-cycle
ηt on Et, and corresponding period

Q(t) :=
ˆ

ηt

ωt.

Noticing from the homogeneous form of the equation that E0 =

{Z0Z1Z2 = 0} is a union of 3 lines (each ∼= P1), we can easily vi-
sualize what happens to Et, γt, and ηt as t tends to zero:

1

2

0

Z =0

Z =0

Z =0

degeneration

undergoes

E0Et

γ

γ

0

t

η ηt

0

(thin black cycles are

pinched to points)

From the fact that ωt tends (as t → 0) to dx
x on Z2 = 0, and η0

passes through the poles of this form while γ0 traverses the unit cir-
cle around them, we infer that Q(t) → ∞ as t → 0 but P(t) → 2πi.

We now compute P(t) more precisely, by first noting that the area
integral

¨

|x|=|y|=1

dx ∧ dy
f (x, y)

=

¨

dx ∧ d f
fy · f

(since d f = fxdx + fydy and dx ∧ dx = 0)

=

ˆ

|x|=1

7
ˆ

|y|=1

d f (x, y)
f (x, y)

· 1
fy(x, y)

8
dx

(where inside the parentheses x is a fixed constant). Now thinking
about the equation f (x, y) = 0 for |t| small (and x fixed with |x| = 1),
we have y3 + ay + b = 0 where a = − x

t is big and b = x3 + 1 is
not. This means that two of the roots are big and one is small — in
particular, there is exactly one solution y(x) with modulus < 1.
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Therefore, by Cauchy’s residue theorem, the integral above

=

ˆ

|x|=1

/
2πi · 1

fy(x, y(x))

0
dx

= 2πi
ˆ

|x| = 1

y = y(x)

dx
fy

= 2πi
ˆ

γt

ωt,

and

P(t) =
1

2πi

¨

|x|=|y|=1

dx ∧ dy
f (x, y)

=
1

2πi

¨

|x|=|y|=1

dx
x ∧ dy

y

1 − tϕ(x, y)

=
1

2πi

¨

|x|=|y|=1
∑
n≥0

tn ϕndlogx ∧ dlogy,

where dlogx = dx
x and ϕn means simply the nth power of ϕ(x, y).

Using Cauchy residue twice, we obtain

P(t) = 2πi ∑
n≥0

tn ϕn(0, 0),

in which ϕn(0, 0) =: [ϕn]0 is the constant term of ϕn = (x2y−1 +

x−1y2 + x−1y−1)n.
We can make this more explicit. Given a product

(x2y−1 + x−1y2 + x−1y−1) · · · · · (x2y−1 + x−1y2 + x−1y−1)
+ ,- .

n times

,

each contribution to the constant term comes from exponents sum-
ming to (0, 0) (so that the monomials multiply to x0y0). But the only
combinations of (2,−1), (−1, 2), (−1,−1) summming to (0, 0) are:
m(2,−1) + m(−1, 2) + m(−1,−1). So ϕn can only have a nonzero
constant term if n = 3m (i.e. 3|n); and this constant term is then
given by the number of ways to choose

1
23

24

x2y−1 from m factors
x−1y2 from m factors

x−1y−1 from m factors

which is ( 3m
m,m,m) := (3m)!

m!m!m! .
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We conclude that

(23.2.1) P(t) = 2πi ∑
m≥0

t3m · (3m)!
(m!)3 = 2πi 2F1

/
1
3

,
2
3

; 1; (3t)3
0

,

where by definition (writing (a)m := a(a + 1) · · · (a + m − 1) for the
“Pochhammer symbol”)

2F1(a, b; c; u) := 1 + ∑
m≥1

(a)m(b)m

(c)mm!
um

is the Gauss hypergeometric function.
Notice that P(t) is “really” a function of (3t)3 =: u. This reflects

the symmetry in the family Et:

Et −→ Eζ3t

(x, y) +−→ (ζ3x, y).

The Gauss hypergeometric function satisfies a well-known ODE. In
this case, writing P0(u) = P(t) and Q0(u) = Q(t),

(23.2.2)
M

u(1 − u)
d2

du2 + (1 − 2u)
d

du
− 2

9

N
P0(u) = 0.

For reasons that will become clear in §23.5, the ODE satisfied by P0

must be satisfied by the other period Q0, which turns out to have
a term of the form log u

2πi P0(u) reflecting the fact that “following ηt

around t = 0” yields ηt + 3γt in H1(Et, Z).

23.3. Cohomology of an elliptic curve E

Let V be a finite-dimensional vector space over C, with basis
{ek}n

k=1. The second tensor power of V, written V ⊗ V, is the n2-
dimensional vector space consisting of finite sums ∑i vi ⊗wi (vi, wi ∈
V) subject to bilinearity (e.g., on the left (αv + βw) ⊗ u = αv ⊗
u + βw ⊗ u); it has basis {ek ⊗ eℓ}n

k,ℓ=1. The second exterior power
!2 V consists of finite sums ∑ vi ∧ wi satisfying bilinearity and also
v ∧ w = −w ∧ v (so that v ∧ v = 0); it may be viewed as a quotient-



23.3. COHOMOLOGY OF AN ELLIPTIC CURVE E 289

or sub-space of V ⊗ V, and has basis {ek ∧ eℓ}1≤k<ℓ≤n hence dimen-
sion (n

2). In particular, if dim V = 2, then dim(
!2 V) = 1; this is

essentially the only case we shall use.
Recall the homology groups

H1(E, Z) =
Z 〈closed paths (“1-cycles”) on E〉

Z 〈boundaries of regions in E〉
from §19.1. The homology class represented by a 1-cycle γ (in the
numerator) will be denoted by [γ]. Dualizing homology, we define
cohomology groups (with complex coefficients) by

H1(E, C) := Hom (H1(E, Z), C) (∼= C2).

We want to argue that cohomology classes (i.e. elements of H1) can
be represented by differential forms.

To that end, write A0(E) for C∞ functions, and A1(E) for the C∞

1-forms on E — expressed by f dx + gdy in local coordinates, where
z = x + iy and f , g are C∞ — familiar from Chapter 13. Finally, let
A2(E) denote the C∞ 2-forms; these are objects locally of the form

Gdx ∧ dy (= −Gdy ∧ dx = − i
2

Gdz ∧ dz̄ =
i
2

Gdz̄ ∧ dz)

(with G smooth), which you may think of as fields of infinitesimal
area elements. In more sophisticated terms, they are C∞ sections of
the bundle

!2 T∗E = ∪p∈E
!2 T∗

p E. (Refer to §13.1 for notation.)
The various degrees of forms are “connected” by exterior differ-

entiation
d : A0(E) → A1(E)

sending

F +→ dF := Fxdx + Fydy =
∂F
∂z

dz +
∂F
∂z̄

dz̄,

and
d : A1(E) → A2(E)

sending

f dx + gdy +→ d f ∧ dx + dg ∧ dy = (gx − fy)dx ∧ dy.
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The 1st de Rham cohomology group of E is then defined by

H1
dR(E, C) :=

ker(d) ⊂ A1(E)
d(A0(E))

=
“closed” C∞ forms
“exact” C∞ forms

;

the class represented by a 1-form ω is written [ω].

23.3.1. LEMMA. The map

θ : H1
dR(E, C) → H1(E, C)

[ω] +→ {[γ] +→
´

γ ω}

is well-defined, and an isomorphism. (Here, “[γ] +→
´

γ ω” means the
complex-linear functional on homology classes given by integrating ω over
a representative 1-cycle.)

PROOF. First we check well-definedness: if γ is closed (∂γ = 0)
and ω exact (ω = dη), then θ([ω]) = 0 since

´

γ ω =
´

γ dη =
´

∂γ η =

0. If γ is a boundary (γ = ∂Γ) and ω is closed (dω = 0) then
´

γ ω =
´

∂Γ ω =
´

Γ dω = 0, so that θ([ω]) is defined on the level of homology
classes. (The middle equality in both cases — swapping ∂ and d —
is Stokes’s theorem, a generalization of the fundamental theorem of
calculus for differential forms.)

To see that θ is injective, assume θ([ω]) = 0, and let p be a point
of E. Then F (q) =

´ q
p ω defines a C∞ function F on E. (The reason F

isn’t “multivalued” is that two paths from p to q differ by a cycle γ,
and
´

γ ω = 0 by the assumption.) Now ω = dF by the fundamental
theorem of calculus, and so [ω] = 0.

Finally, write α, β for a basis of H1(E, Z). Using the identification

H1(E, C)
∼=→ C2 which evaluates a functional against this basis, a nice

way to think about the map θ is as sending [ω] +→
7
´

α ω
´

β ω

8
∈ C2.

Moreover, the Abel map E
∼=→ C/ΛE identifies ω with du. Rescaling

ω (by a complex constant) so that
´

α ω = 1, the 2-vector becomes

θ([du]) =

7
´

α du
´

β du

8
=

7
1
τ

8
(where we may assume τ ∈ H), and
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we have the standard picture

α

β ΛC/

1(=u)

τ

coord. u

Noting that θ([dū]) =

7
´

α dū
´

β dū

8
=

7
´

α du
´

β du

8
=

7
1
τ̄

8
, we con-

clude that θ is surjective since ( 1
τ ) , ( 1

τ̄ ) span C2. □

23.3.2. REMARK. (a) Meromorphic 1-forms on a Riemann surface
are always closed on the complement of their poles (which is where
“d” makes sense), since locally [ f mero.] d{ f dz} = d f ∧ dz = ∂ f

∂z dz ∧
dz and dz ∧ dz = −dz ∧ dz = 0. (Here we have used ∂ f

∂z̄ = 0, which
expresses the holomorphicity of f away from said poles.) Using the
same formula as above (i.e. ω +→ {γ +→

´

γ ω}), we can define a map

ker(Res) ⊂ K1(E)
d(K(E))

θ̃−→ H1(E, C)

which also turns out to be an isomorphism. (Here ker(Res) consists
of forms with no residues – in particular, with no simple poles. This
doesn’t mean they’re holomorphic though!)

(b) A nonzero holomorphic 1-form ω cannot be d of a smooth
function G or meromorphic function f . (Locally the integral of ω is
a holomorphic function, so in either case G or f would actually have
to be holomorphic, hence by Liouville constant, making ω zero.) So
we have a commuting diagram of injective homomorphisms

(23.3.3) Ω1(E) "
#

!!
$ %

θ̂

))◆◆
◆◆◆

◆◆◆
◆◆◆

◆◆
# &

((

ker(d)⊂A1(E)
exact

θ∼=
((

ker(Res)⊂K1(E)
exact

θ̃

∼=
!! H1(E, C).

In what follows θ̂, θ̃, θ will all just be denoted θ, which you should
read “take the period vector associated to this 1-form”.
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23.4. Differentiating cohomology classes

Given a family {Et}t∈P1 of elliptic curves (smooth but for finitely
many t) with holomorphic forms ωt ∈ Ω1(Et), write

θ(ωt) =:

7
P(t)
Q(t)

8
.

This assumes a choice (this unfortunately only works locally in t) of
basis αt, βt for H1(Et, Z), so that P(t) =

´

αt
ωt, Q(t) =

´

βt
ωt. We can

differentiate this period vector to obtain
7

P′(t)
Q′(t)

8
,

which for each t (considering the isomorphisms in (23.3.3)) is θ of
something in ker(d) ⊂ A1(Et) or ker(Res) ⊂ K1(E) (but not Ω1(Et)).
We will use the latter, and we write ω′

t for a family of residue-free
meromorphic 1-forms satisfying

θ(ω′
t) =

7
P′(t)
Q′(t)

8
.

The point is that by differentiating families of cohomology classes
you get a new family of cohomology classes.

23.4.1. EXAMPLE. Consider the Legendre family Et ⊂ P2 given
by the projective closure of

y2 = x(x − 1)(x − t),

with holomorphic 1-form family

ωt =
dx
y

????
Et

∈ Ω1(Et).

We have

θ(ωt) =

7
P(t)
Q(t)

8
=

7
´

αt
ωt

´

βt
ωt

8
=

%

'

´

αt
dx

±
√

x(x−1)(x−t)
´

βt
dx

±
√

x(x−1)(x−t)

(

* ,
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where αt, βt are the 1-cycles exhibited in the schmatic picture

β
t

"2 sheets’’ over P
1

E
t

0 t 1

or the topological picture

α

0

t
1

0

t

1
8

8

α

t

t

β t

βt

β
t

"−  x(x−1)(x−t) ""+  x(x−1)(x−t) "

— which shows the two sheets (each is a P1 with slits from 0 to t and
1 to ∞) being glued together to give Et (cf. §2.3).

From the latter picture, it is clear that for t small we may take
αt to be stationary on its sheet as t moves, and the two “pieces” of
βt on the different sheets not to change either. Therefore we may
differentiate the above integrals under the integral sign (by d

dt ) to
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obtain
7

P′(t)
Q′(t)

8
=

%

&'

´

αt

1
2 dx

±(x−t)
√

x(x−1)(x−t)
´

βt

1
2 dx

±(x−t)
√

x(x−1)(x−t)

(

)*

and
7

P′′(t)
Q′′(t)

8
=

%

&'

´

αt

3
4 dx

±(x−t)2
√

x(x−1)(x−t)
´

βt

3
4 dx

±(x−t)2
√

x(x−1)(x−t)

(

)* ;

obviously the first is θ
#

1/2
x−t

dx
y |Et

$
and the second θ

#
3/4

(x−t)2
dx
y |Et

$
,

and so we have

ω′
t =

1/2

(x − t)
dx
y

????
Et

, ω′′
t =

3/4

(x − t)2
dx
y

????
Et

.

These both belong to ker(Res) ⊂ K1(Et), since their only poles are
at (t, 0) (orders 2 and 4 resp.) and the sum of the residues of a mero-
morphic form must always be zero.

Of course, θ(ωt), θ(ω′
t), and θ(ω′′

t ) must be linearly dependent in
C2! Therefore, [ωt], [ω′

t], and [ω′′
t ] are linearly dependent in K1(Et)

modulo d(K(Et)), i.e. as cohomology classes.

23.5. The Picard-Fuchs equation

Since what is being differentiated in the last section is really co-
homology classes (via the identification with C2), it makes sense to
write

Dt[ωt] = [ω′
t] , D2

t [ωt] = [ω′′
t ].

With this notation, the linear dependence observation above implies
an ODE of the form

(23.5.1)
#

A(t)D2
t + B(t)Dt + C(t)

$

+ ,- .
(·) = 0

=:DPF

satisfied by [ωt] (as a varying cohomology class) hence by P(t) and
Q(t)!
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However, to find A, B, and C, we have to compute. We start by
differentiating a meromorphic function

d

7
2y

(x − t)2

????
Et

8

+ ,- .
∈K(E)

=
−4ydx
(x − t)3

????
Et

+
2dy

(x − t)2

????
Et

,

which using y2 = x(x − 1)(x − t) =⇒ dy = 3x2−2(1+t)x+t
2y dx be-

comes

=

/
−4y2

(x − t)3y
+

3x2 − 2(1 + t)x + t
(x − t)2y

0
dx

????
Et

and using y2 = x(x − 1)(x − t) again

=
−x2 + (2 − 2t)x + t

(x − t)2y
dx

????
Et

=
−(x − t)2 − 2tx + t2 + (2 − 2t)x + t

(x − t)2
dx
y

????
Et

= −ωt +
(2 − 4t)x + t2 + t

(x − t)2
dx
y

????
Et

= · · · = −ωt + 4(1 − 2t)ω′
t + 4t(1 − t)ω′′

t .

So this last expression is d of a meromorphic function, hence (has
both its periods 0 and) is trivial in H1(Et, C). We conclude that (di-
viding through by 4 to simplify)

(23.5.2) DPF = t(t − 1)D2
t + (2t − 1)Dt +

1
4

kills [ωt]. From ODE theory, the associated indicial equation is

r(r − 1) +
/

lim
t→0

B(t)
A(t)

t
0

r +
/

lim
t→0

C(t)
A(t)

0
= r2

which has a double root, implying one holomorphic solution (unique
up to scale) and one logarithmic solution near t = 0.
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23.6. Computation of a period (Picard-Fuchs method)

First let’s compute its limit

lim
t→0

ˆ

αt

ωt

+ ,- .
P(t)

= lim
t→0

ˆ

αt

dx
±
:

x(x − 1)(x − t)
.

Referring to the picture of αt (on the slit P1) above, this

=

‰

dx
x
√

x − 1
= 2πi · Res0

/
dx

x
√

x − 1

0

= 2πi · 1√
−1

= 2π,

and so P(t) must be “the” holomorphic solution.
Next write P(t) = 2π ∑ antn, a0 = 1, and apply DPF:

0 = DPF ∑ antn

= ∑
n≥0

Z
t(t − 1)(n + 2)(n + 1)an+2 + (2t − 1)(n + 1)an+1 +

1
4

an

[
tn

where we have shifted indices after differentiating. Collecting terms
with like powers of t, this

= ∑
n≥0

Z
1
4

an − (n + 1)an+1

[
tn + ∑

n≥0

;
2(n + 1)an+1

−(n + 1)(n + 2)an+2

<
tn+1

+ ∑
n≥0

(n + 1)(n + 2)an+2tn+2.

Shifting indices once more, we have

= ∑
n≥0

Z
1
4

an − (n + 1)an+1 + 2nan − n(n + 1)an+1 + n(n − 1)an

[
tn

= ∑
n≥0

;/
n +

1
2

02

an − (n + 1)2an+1

<
tn.
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Since this power series is zero, we get a recurrence relation for the
coefficients of P(t):

an+1 =

7
n + 1

2
n + 1

82

an,

so that

an = a0+,-.
=1

·
/

1/2

1

3/2

2
· · ·

1/2 + n − 1
n

02

=

/
−1/2 · −3/2 · · · · · (−1/2 − n + 1)

n!

02

=

/
−1/2

n

02

,

and

(23.6.1) P(t) = 2π ∑
n≥0

/
−1/2

n

02

tn = 2π 2F1(
1
2 , 1

2 ; 1; t).

Again, the situation as t → 0 looks like

α

β β

Ε Ε
0t

α
0

0

t

t

t      0

In the next chapter the formula for P(t) will be connected to counting
rational points on cubics over Fp.

Exercises
(1) Check that 2F1

#
1
3 , 2

3 ; 1; (3t)3
$

= ∑m≥0 t3m · (3m)!
(m!)3 by writing out

the Pochhammer symbols.
(2) Show that the curves

Et := {Z0Z1W0W1 − t(Z1 − Z0)
2(W1 −W0)

2 = 0} ⊂ P1
Z0:Z1

×P1
W0:W1
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are in fact elliptic (except at those finitely many t — which ones?
— for which they are singular). You could do this by project-
ing to the first P1 and using Riemann-Hurwitz to compute the
genus. (To use R-H in this way, first find all “vertical tangents”,
i.e. places on the curve where the partials with respect to W0 and
W1 vanish.)

(3) Writing the family of curves from the last exercise in affine form,
xy − t(x − 1)2(y − 1)2 = 0 (or 1 − tϕ(x, y) = 0), define a family
of loops γt ∈ H1(Et, Z) for small t, and a family of holomorphic
forms ωt ∈ Ω1(Et), exactly as in the text. Compute the period
P(t) :=

´

γt
ωt as a power series, using the computation done

above as a model.
(4) Check that θ̃ in Remark 23.3.2(a) is well-defined and an isomor-

phism. [Hint: the difficult part here is surjectivity. Working with
C/Λ (Λ = Z〈λ1, λ2〉) in lieu of E ⊂ P2, let ζ(u) be a primitive of
℘(u) on C \ Λ, and note that ζ(u + mλ1 + nλ2) = mη1 + nη2 for
some ηi ∈ C (why?). Let F be a fundamental domain with 0 in
its interior, and consider

´

∂F ζ(u)du. You will find that a certain
determinant doesn’t vanish, which shows that a certain map has
rank 2.]

(5) Find Q(t) in the Legendre example by plugging the ansatz

log t
2π

P(t) + ∑
n≥1

bntn

into the Picard-Fuchs equation.
(6) Let Et denote the family of elliptic curves in P2 with affine equa-

tion (F(x, y) =) xy − (3x3 + 2y3 + 1)t = 0. This comes with a
family of holomorphic 1-forms given (in affine form) by ωt =

dx
(2πi)Fy

|Et . (a) Compute (as a power series in t) a period of ωt. (b)

Deduce from this the smallest nonzero value of |t| for which Et

is singular.


