CHAPTER 24

Elliptic curves over finite fields

In this final chapter on elliptic curves, we take a brief dip into
something much more arithmetic, counting the number (mod p) of
solutions in IP?(FF,)) to the equations for the Hesse and Legendre cu-
bics from the last chapter. These cubics still depend on ¢, which is
taken to be an integer now (rather than a complex number) so that
we can reduce modulo p. In a rather bizarre twist, the number of
points (over IFy) in each case is given by nearly the same power se-
ries as the holomorphic period on the corresponding complex fam-
ily of elliptic curves from Chapter 23. We summarize one abstract
way, due to Y. MANIN, to understand this connection between arith-
metic and transcendental algebraic geometry. A brief discussion of
the mod p group law and cryptography conclude the chapter.

24.1. Sum formulas

Let p be an odd prime, and F, the field with p elements (i.e.
Z./pZ viewed as a ring). Equality in IF, will generally be denoted

[ —

(p)
24.1.1. LEMMA. Fork € Z,

k 0, p—11k
Y, X =
-1, p—1|k

x€IF, (or F})

by “=", not . (We will use the latter for counting points mod p.)

n ]Fp.

PROOEF. Given y € F,, the assignment x — yx yields an isomor-
phism of additive groups IF, — IF,. Therefore
(24.1.2) Y =Y ()= Y AR
x€F), x€F, x€F,
299



300 24. ELLIPTIC CURVES OVER FINITE FIELDS
Now, F}, is a cyclic (multiplicative) group of order p — 1, and so
k
(Fp)"={1} <= p-1|k

Provided p — 11k, then, there exists y € IF}, with yk # 1. By (24.1.2),
we have

0= -1) } &

xer

which implies (dividing by y* — 1)

0=) xk,

x€F,

On the other hand, if p — 1 | k, then x* = 1 for all x € IF), and so

Y=Y 1=p-1=-1 O

xelF, xe]F,*;

24.1.3. LEMMA. For x € le,

Pl 0 1
R B

PROOF. If x = 1 then the sumis1+---+1 =p—-1= —1. If
———
p—1 times
x # 1 then
G I S o
1—x Xt = x" — X
k=1 k=1 k=2
£0

= x—xF

= x(1—xP71)

which (since IF, is cyclic of order p — 1)

= x(1-1) = 0. 0

24.1.4. LEMMA. Let € ). Then &'z = +1, and

(eP «— 7 =1
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—1
PROOE. Since [, is cyclic of order p — 1, ((;‘VT)Z = ¢r1 = 1.
—1
Moreover, if a is a generator then we cannot have it =1 (IF; would
_ —1
then have order pTl, a contradiction). Hence x +— T yields a sur-

jective homomorphism of multiplicative groups
F, = {+1, -1},

. 1 _ p-1 . .2
whose kernel necessarily has order ;|F,| = ~5-. Now if §{ = 7” is

a square, then ¢ B = nP~1 = 1. As pT_l elements of IF, are squares
(why?), these exhaust the kernel of 6 and the non-square elements
go to —1. O

24.2. Counting [Fy-points on the Legendre elliptic curve
Consider once again the Legendre family of cubics
Er={Y’Z=X(X-2)(X-tZ)},

but this time with t € Z. After reducing mod p we can look at the
solutions E¢(IF,) C E((FF,), i.e. with X, Y, Z in IF, resp. its algebraic
closure; there is a clear analogy to E¢(Q) C E¢(Q).

We are going to compute the number of points |E;(IF,)| modulo
p,ie. in IFy. (Computing the number in Z is a much harder prob-
lem.) First we claim that
(2421)  |E(F,)| = 1+ Y {1+[x(x—1)(x—t)]pT_l}.

x€lF,
The leading “1” on the RHS counts the point [0 : 0 : 1] “at co”; the rest
of the curve is described by y?> = x(x — 1)(x — t). By Lemma 24.1.4,
the quantity in curly brackets yields (mod p) 2 if x(x — 1)(x — ) is
a square, 1 if x(x —1)(x —t) = 0, and 0 if x(x — 1)(x — t) is not
a square. This exactly counts pairs (x,y) € lFf, solving the affine
equation, confirming (24.2.1).
Now erﬂzp 1 (f) 0, so the RHS of (24.2.1) is

= 1t Fer, 2 (1= 1) (0 -0
p
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i
L

The sum here can be rewritten as }_,cF, xP~H(C T, aux™), which
m=—"5-

by Lemma 24.1.1 is just —ag (mod p). So writing [y for the constant
term of a Laurent polynomial, the above

= . H:Zio ((p—;)h) xf(t)f} {ZZZ; ((P—;)/Z) xk(l)pzlk}] 0

v p—1 _ 2
-1 2(-0%—1)7—4((*’ ;VZ)

p—1
v -1 2
— 1+ (-7} ((” /Z) t!
(=0

—14+(-1)T Y (_1(/2)2t€

>0
=: P(t).

For the last step, we use the definition (in IF )

(—1/2) o -1/2.-3/2. ... (—1/2_£+1)

14 ¢! ’
which is evidently 0 when p > ¢ > pT_l (since _71 — pTH +1 =
-1
w = £ = 0), and equals (p?) for0 < 7 < pgl (and is de-

fined to be 0 for £ > p). We conclude:

24.2.2. PROPOSITION. P(t) counts (mod p) the F,-points of E;.

Notice that

(24.2.3)  P(t)is a “mod p” version of the period P(t) from §23.6!
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24.3. Counting [F-points on the Hesse cubic

For this section, take p to be an odd prime with p = —1 mod 3.
I can’t resist doing the same exercise for the other main example
from the last chapter, namely

Er = {XYZ =t(X3+ Y3+ 7%}

where again we assume t € Z, but not divisible by p. This has affine
form
xy = t(x>+y>+1)
and toric form
T=t(xPy T+ a7 ly ™D,

(. 4
-~

=:¢(x,y)

where the Laurent polynomial ¢(x,y) is defined for (x,y) € (]F;)z.
Using the toric form and Lemma 24.1.3, it is easy to compute the
IF,-points )

Ef (Fp) := Ex(IFp) N (IF,)"
Namely, we have

p
EfE) = - Y Y (eon),

the point being (besides the Lemma) that t¢(x,y) is 1 (in IFp) for ex-
actly those (x,y) on E;. Switching the order of summation this be-
comes

P

(24.3.1) ==Y & Y oy
k=1 (xy)e(F;)?

Now by Lemma 24.1.1

y - N _ v op-tlii
l]: 1 ] —
Z o (Zx) (Zy) {O, otherwise

(xy)€(Fp)? xeFy yeF;
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Fork e [1,p—2],

(@(x,y)* = [¢"0 + {

terms with powers of x, y
not both divisibleby p —1 |

Our assumption on p implies that 31 p — 1, and so

(@(x, )Pt = [P o + x2PVy= (1) x= (=1 2(0—1)

—{—x_(”_l)y_(”_l) n terms wit}'1 I??WGI‘S of x,y -
not both divisible by p — 1

(In particular, there are no x~(P=1), y=(P=1) xp=1y=(p=1) x=(p=D)yp-1
xP~1 or y”_l terms.) So (24.3.1) becomes

p—1
= — Z tk[q)k]o — tp_l - 3.
() k=1

Recall from §23.2 that [¢¥]o = (,, o) if k = 3m (and 0 if 3 { k).

On the other hand, looking along the coordinate axes X = 0,
Y =0, Z = 0 we get (only) the points

[1:—-1:0], [0:1:-1], [-1:0:1]

in E¢(IFp). For example, along Z = 0 (on E;) we must have X,Y # 0
and so may assume Y = 1; then the equation is X® + 1 = 0. This has
only X = —1 as solution: otherwise we would have an element of
order 6 in ]F;;, s0 6 | p — 1, contradicting our assumption on p.

We conclude that!

J 3m 3m
E(Fp)| = 3(1— 1) — ( )tamz_ ( )tsm'
|E( P)|(p) ( ) = \m,m,m (p) mZ>:1 m, m, m

—_

=
W)

again very reminiscent of the P(t) from (23.2.1)!

24.4. Deep reasons for (24.2.3)

With two examples to support it, this amazing relationship be-
tween periods and point-counts can’t be a coincidence. I am going

1again with the convention that the multinomial symbol is zero for m > p (and
the observation that it is zero for pT_l <m < p).
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to explain why it happens in the first example, though the second
one is quite similar.

The issue is this: in §23.2, why on earth does |E;(F,)| — 1 (not
counting the point at o) appear to solve the Picard-Fuchs equation
(t(t=1)D? + (2t =1)D; + 1) (-) = 07 Indeed, P(t) — 1 = 3LP(1),
where P(t) is the solution from §23.6!! The two computations were
quite elementary, after all, so maybe there’s an elementary explana-
tion for their equivalence?

Not so! This is dealt with in [Clemens, “A scrapbook of complex
curve theory,” pp. 65-69] and I'll just give a hint of the flavor here. It
involves an algebro-geometric version of the Lefschetz trace formula
(the formula from topology for the number of fixed points of a map-
ping), the Riemann-Roch theorem, Serre duality, and abstract sheaf
theory. However, it isn’t hard to summarize.

Consider E; over IF_p, t € Fp. Then writing FP for “number of
fixed points”, and froby, for the map [Z : X : Y] > [ZF : XP : YP],

|E¢(Fp)| = FP{frob,: E(F,) — E«(F,)}.
This should make sense to you because as an automorphism of F,,
the p™-power (Frobenius) map fixes exactly the elements of Fy,. By
the Lefschetz-type theorem, it turns out that this

(f) 1 — trace {frobp|H1(Et/1F—p,O)}

where the H! is sheaf cohomology computed with respect to the
Zariski topology, O is the sheaf of regular functions, and frob* is
the action by pullback (under frob,) on cohomology classes.

This H! is a 1-dimensional vector space, with generator repre-
sented by a certain rational function & with two simple poles, at
q = [1:0: 0] and some other point p € E;(F,). More precisely,
H? (Et/ ]F_p, O) is isomorphic to the space of rational functions on E;
with poles allowed only at P and Q modulo the subspace of rational
functions with poles allowed at either P or Q (not both).? You should

2That this space is 1-dimensional in the more familiar complex case is Exercise (2).
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also note that pulling back by frob, stabilizes the vector space we
have just described, since (as P, Q are taken to be in Et(le) rather
than E;(FF,)) P and Q are fixed under frob,. So the displayed ex-
pression at least makes sense.

Next, we expand h in formal power series h = % + Y=o bey’
about g,% and also expand a generator w; € Q(E;/ F,) (regular dif-

ferentials) as [} x> ap()yF1]

dy, where a1(t) = 1. Recall also from
the complex case, that residues of meromorphic functions require,
and depend on, a choice of local coordinate; while residues of mero-
morphic 1-forms are invariant (i.e. require no such choice, as they
can already be integrated around a loop without appending a “dz”).
So for functions F with a pole at Q, we take residue by computing
Res;(Fw); if F has no other pole, then (as residues sum to zero) the
residue has to be zero.

Now, writing T for the trace of frob, above, we have

frobyh (= ho froby) = gy + Lisobey'? = Th+ f + 3.

(The last equality, in which f has only a pole at g and ¢ has only a
pole at P, is by 1-dimensionality of H!(E;, ©) and the “explicit de-
scription” we gave of it. In that vector space, this reads frob*[h] =
7[h].) Moreover, Resg(hw;) = 1 while

T = TResq(hwy) + Resq(fwy) + Resg(gwy)
= Resq((frob,h) - wt)
= ap(t),
with the last equality obtained by multiplying out the explicit ex-
pressions for frob,h and w;. So we end up with

|Et(IFp)| = 1- ﬂp(t),
()

and (like the periods of w;) a,(t) must satisfy the Picard-Fuchs equa-
tion because [w;] does. Again, the “regular” solution of Dpg(-) = 0
is unique up to scale, and from there we are essentially done.

3Note that y gives a local coordinate about [1: 0 : 0] on E;; x does not.
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In general, a matrix for the transformation frob, € End(H 1(c,0))
(for a projective curve C/IF)) is called a Hasse-Witt matrix; for C el-
liptic, this is 1 x 1 and just the T above. This generalizes to higher
dimension, and its relation to point-counting and periods for Calabi-
Yau varieties has been the subject of much recent research. The ellip-
tic curve cases above are also related to modular forms: for fixed ¢,
the a,,’s reappear as (the mod p reductions of) the pth coefficients of
cusp forms, or (by a beautiful equivalence) as eigenvalues of Hecke
operators.

24.5. The group law on E(IF))
Let E C IP? be defined by
F(Z,X,Y):=Y?Z — (X> + AXZ*+ BZ%) =0,

with A, B € Z satisfying 4A3 +27B% # 0 (p an odd prime). Then
(r)
E has “good reduction” mod p — that is, it is nonsingular over FF,.

If we define the operation “+” on E(IF;) as in §20.1, the proof of as-
sociativity in §20.3 (which still made use of the topology of E(C) via
the argument from §15.2) is no longer applicable as IF,, is not a sub-
tield of C. This is easy to overcome by using the Cayley-Bacharach
Theorem from §15.1, see Exercise (3) below.

24.5.1. REMARK. Given [a:b:c] € E(Q), one can scale 4,b,c to
be relatively prime integers and reduce mod p to get an element of
E(IF,). While this produces a group homomorphism, it is not usually
surjective. So we really do need a different explanation of associativ-
ity for E(IF,).

Because one can scale projective coordinates, Z-points and Q-
points on a projective curve are the same thing. But on the affine curve
y?> = x3 + Ax + B, by “Z-points” one usually means that x,y € Z.
If one defines E(Z) to mean affine integral points together with O, the
result is usually not closed under “+4” (why?) but does contain the
torsion subgroup of E(Q) by a theorem of Nagell and Lutz.
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By the same arguments as in §20.4, one obtains the formulas
(24.5.2)

_ (Yo~ Vypr . . __(Yyo—vr . _
XP+Q - <XQ—XP> Xp XQ, yP+Q - (xQ—xp> (XP+Q xp) yp
3xp+A 3x3+A
Xop = ( 2up ) — 2xp, Yop = — ( Zur ) (x2p — xp) — yp

relating affine coordinates of P, Q, and P + Q (in E(IF;)). Exactly as
at the beginning of §24.2, we have the point-count formula*

(24.53) |E(Fp)| =1+4p+ PrActB) = 1 4 B+Ar+B
' §p< ) 5 ;p( 7

The Hasse bound (which we won't prove) gives the related estimate
(24.5.4) |E(Fp)| —p—1|<2yp

24.5.5. EXAMPLE. Let E have affine equation y?> = x> —2x — 3
over FF7, and consider P := (3,2). By (24.5.2), 2P = (2,6), 3P =
2P+ P = (4,2), 4P = (0,5), 5P = (5,0), 6P = (0,2), 7P = (4,5),
8P = (2,1),9P = (3,5), and 10P = (3,2) + (3,5) = O. This gives a
cyclic subgroup of order 10 in E(IFy).

There are two ways to check that these are all the points and
E(FF;) = Z/10Z: use (24.5.3) or (24.5.4). For instance, the Hasse
bound is 3 < |E(FF;)| < 13, while Lagrange’s theorem from group
theory gives 10||E(FFy)]|.

24.5.6. EXAMPLE. Consider y*> = x> — x over FFy;. Since x> — x is
an odd function, and (=) = —(7;) (as —1 isn’t a square mod 71),
the sum in (24.5.3) cancels out, and |E(F7;)| =72 = 8-9. Let E; :=
{P € E(F;) | 8P = O} and E3 := {Q € E(F7) | 9Q = O}. Basic
structure theory of abelian groups tells us that E(FF7;) = E; x E3. As
they are abelian, there are three possibilities for E; and two for E3; to
determine them see Exercise (4).

“Here () is the Legendre symbol, which is 1 if a is a nonzero square mod p, 0if p | 4,

—1
and —1 if a4 is not a square mod p; it is computed by a'T (in IFp) hence satisfies

() = (2)(5).
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24.6. Elliptic cryptosystems

Given P,Q € E(F,), with Q € (P) (the group generated by
P), and N := |(P)|, there exists a unique solution n =: log,(Q) €
Z/NZ to nP = Q. We may think of this elliptic discrete logarithm
(EDL) as defining an isomorphism

(24.6.1) logp: (P) = Z/NZ

of groups. The terminology comes from the analogy between E(IF,)
and the (multiplicative) group (Z/pZ)*.

While (24.6.1) is (without a quantum computer) very difficult to
compute for large p, its inverse is not. To compute nP quickly — in
time proportional to log, p — we may use “double-and-add”, writ-
ing n in binary as as ng +m2+ --- +n,2" (n; = 0 or 1) and nP
as ngP + n1(2P) + n32(2P) + - - - + n,2(2"~'P). The elliptic El Gamal
cryptosystem gives a simple example of how one can take advantage
of this to provide secure communications over a public channel:

e Sender and Receiver agree publically on a prime p, elliptic curve
E,and P € E(F,).

e Receiver chooses a private key n € Z, computes and sends the
public key Q := nP to Sender.

e Sender wants to send a message M € E(IF,). To do this, they
choose a (private) ephemeral key k € Z, and compute/send the
ciphertext (Cq,Cy) := (kP, M + kQ) to Receiver.

e Receiver decrypts the ciphertext, by computing C; — nC; = M +
kQ — nkP = M + knP — nkP = M.

It turns out that while the difficulty of the ordinary discrete log prob-

lem (in (Z/ pZ)*) grows “sub-exponentially” in log, (p), that of com-

puting the EDL grows exponentially (like ,/p). Roughly speaking,
implementing the above scheme with 50 digit numbers for p, A, and

B will give security equivalent to 200 digits in the “ordinary” equiv-

alent, with much greater efficiency.

24.6.2. REMARK. Whatis a “message in E(IF,)”? One can imagine
converting a message into a number in Fj, but this may not be (say)
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the x-coordinate of a point in E(IF,). A way around this defect is
suggested in Exercise (6).

Exercises

(1) Check that Et(]F_p) is closed under froby, for E; as in §24.4 and
t € Fp.

(2) Let E C IP? be a smooth cubic over the complex numbers, and
p,q € E(C) two distinct points. Let V be the vector space of
meromorphic functions on E with poles only at p and g, with sub-
spaces W, and W, (the meromorphic functions with poles only at
p and g respectively). Using Abel’s theorem, prove that the di-
mension of V /(W 4+ W,) is one. [Hint: you will also need to use
the fact that w € Q!(E) has no zeroes, and that the “residues”
of F € V given by Res,(Fw) and Res;(Fw) must sum to zero (cf.
Prop. 13.1.10(b)).]

(3) Use Cayley-Bacharach to prove associativity for (E(IF,), +).
[Hint: You need to show that P, Q + R, and (P + Q) % R are
collinear. Take C, D, E in Th. 15.1.2 to be Lpg U Losr 0 U Lpsq,r,
E, and Lgg respectively; this will produce a quadric Q. Then
consider the intersection of Lp.o o and Q.]

(4) Determine E; and E3 in Example 24.5.6 as follows: (a) for E,,
count the 2-torsion points in E(IFy;) and the 2-torsion elements
in the 3 abelian groups of order 8. (b) For E3, compute the (affine

3 — x, and use this to

equation for the) Hessian curve of y*> = x
bound the number of 3-torsion points of E(IFy;).

(5) With E given by y?> = x® — x, find the group structure of E(FFs)
and E(Fqq).

(6) Modify the encryption-decryption scheme (last 2 steps) in the el-
liptic E1 Gamal system of §24.6 as follows: Sender has a mes-
sage (my,my) € F, x [F, and sends the ciphertext (R, (c1,¢2)) :=
(kP, (xkgc1,YkC2)). As Receiver, use T = nR = (xr,yr) to de-
crypt the message (how?).



