
CHAPTER 24

Elliptic curves over finite fields

In this final chapter on elliptic curves, we take a brief dip into
something much more arithmetic, counting the number (mod p) of
solutions in P2(Fp) to the equations for the Hesse and Legendre cu-
bics from the last chapter. These cubics still depend on t, which is
taken to be an integer now (rather than a complex number) so that
we can reduce modulo p. In a rather bizarre twist, the number of
points (over Fp) in each case is given by nearly the same power se-
ries as the holomorphic period on the corresponding complex fam-
ily of elliptic curves from Chapter 23. We summarize one abstract
way, due to Y. MANIN, to understand this connection between arith-
metic and transcendental algebraic geometry. A brief discussion of
the mod p group law and cryptography conclude the chapter.

24.1. Sum formulas

Let p be an odd prime, and Fp the field with p elements (i.e.
Z/pZ viewed as a ring). Equality in Fp will generally be denoted
by “=”, not “≡

(p)
”. (We will use the latter for counting points mod p.)

24.1.1. LEMMA. For k ∈ Z,

∑
x∈Fp (or F∗

p)

xk =

K
0, p − 1 ∤ k
−1, p − 1 | k

in Fp.

PROOF. Given y ∈ F∗
p, the assignment x +→ yx yields an isomor-

phism of additive groups Fp → Fp. Therefore

(24.1.2) yk ∑
x∈Fp

xk = ∑
x∈Fp

(xy)k = ∑
x∈Fp

xk.

299

300 24. ELLIPTIC CURVES OVER FINITE FIELDS

Now, F∗
p is a cyclic (multiplicative) group of order p − 1, and so

(F∗
p)

k = {1} ⇐⇒ p − 1 | k.

Provided p − 1 ∤ k, then, there exists y ∈ F∗
p with yk ∕= 1. By (24.1.2),

we have
0 = (yk − 1) ∑

x∈Fp

xk

which implies (dividing by yk − 1)

0 = ∑
x∈Fp

xk.

On the other hand, if p − 1 | k, then xk = 1 for all x ∈ F∗
p and so

∑
x∈Fp

xk = ∑
x∈F∗

p

1 = p − 1 = −1. □

24.1.3. LEMMA. For x ∈ Fp,

p−1

∑
k=1

xk =

K
0, x ∕= 1
−1, x = 1

.

PROOF. If x = 1 then the sum is 1 + · · ·+ 1+ ,- .
p−1 times

= p − 1 = −1. If

x ∕= 1 then

(1 − x)+ ,- .
∕=0

p−1

∑
k=1

xk =
p−1

∑
k=1

xk −
p

∑
k=2

xk

= x − xp

= x(1 − xp−1)

which (since F∗
p is cyclic of order p − 1)

= x(1 − 1) = 0. □

24.1.4. LEMMA. Let ξ ∈ F∗
p. Then ξ

p−1
2 = ±1, and

ξ ∈ F2
p ⇐⇒ ξ

p−1
2 = 1.

24.2. COUNTING Fp-POINTS ON THE LEGENDRE ELLIPTIC CURVE 301

PROOF. Since F∗
p is cyclic of order p − 1, (ξ

p−1
2)2 = ξ p−1 = 1.

Moreover, if a is a generator then we cannot have a
p−1

2 = 1 (F∗
p would

then have order p−1
2 , a contradiction). Hence x +→ x

p−1
2 yields a sur-

jective homomorphism of multiplicative groups

F∗
p ↠

θ
{+1,−1},

whose kernel necessarily has order 1
2 |F∗

p| =
p−1

2 . Now if ξ = η2 is

a square, then ξ
p−1

2 = ηp−1 = 1. As p−1
2 elements of F∗

p are squares
(why?), these exhaust the kernel of θ and the non-square elements
go to −1. □

24.2. Counting Fp-points on the Legendre elliptic curve

Consider once again the Legendre family of cubics

Et = {Y2Z = X(X − Z)(X − tZ)},

but this time with t ∈ Z. After reducing mod p we can look at the
solutions Et(Fp) ⊂ Et(Fp), i.e. with X, Y, Z in Fp resp. its algebraic
closure; there is a clear analogy to Et(Q) ⊂ Et(Q̄).

We are going to compute the number of points |Et(Fp)| modulo
p, i.e. in Fp. (Computing the number in Z is a much harder prob-
lem.) First we claim that

(24.2.1) |Et(Fp)| = 1 + ∑
x∈Fp

I
1 + [x(x − 1)(x − t)]

p−1
2

J
.

The leading “1” on the RHS counts the point [0 : 0 : 1] “at ∞”; the rest
of the curve is described by y2 = x(x − 1)(x − t). By Lemma 24.1.4,
the quantity in curly brackets yields (mod p) 2 if x(x − 1)(x − t) is
a square, 1 if x(x − 1)(x − t) = 0, and 0 if x(x − 1)(x − t) is not
a square. This exactly counts pairs (x, y) ∈ F2

p solving the affine
equation, confirming (24.2.1).

Now ∑x∈Fp 1 ≡
(p)

0, so the RHS of (24.2.1) is

≡
(p)

1 + ∑x∈Fp x
p−1

2 (x − 1)
p−1

2 (x − t)
p−1

2

302 24. ELLIPTIC CURVES OVER FINITE FIELDS

= 1 + ∑
x∈Fp

x
p−1

2

,
-

.

p−1
2

∑
ℓ=0

/ p−1
2
ℓ

0
x

p−1
2 −ℓ(−t)ℓ

1
2

3

,
-

.

p−1
2

∑
k=0

/ p−1
2
k

0
xk(−1)

p−1
2 −k

1
2

3

= 1 + ∑
x∈Fp

xp−1

,
-

.

p−1
2

∑
ℓ=0

/ p−1
2
ℓ

0
x−ℓ(−t)ℓ

1
2

3

,
-

.

p−1
2

∑
k=0

/ p−1
2
k

0
xk(−1)

p−1
2 −k

1
2

3 .

The sum here can be rewritten as ∑x∈Fp xp−1(∑
p−1

2

m=− p−1
2

amxm), which

by Lemma 24.1.1 is just −a0 (mod p). So writing [·]0 for the constant
term of a Laurent polynomial, the above

≡
(p)

1−

]

^

1
3

4

p−1
2

∑
ℓ=0

/
(p−1)/2

ℓ

0
x−ℓ(−t)ℓ

F
G

H

1
3

4

p−1
2

∑
k=0

/
(p−1)/2

k

0
xk(−1)

p−1
2 −k

F
G

H

_

`

0

= 1 −
p−1

2

∑
ℓ=0

(−t)ℓ(−1)
p−1

2 −ℓ

/
(p−1)/2

ℓ

02

= 1 + (−1)
p+1

2

p−1
2

∑
ℓ=0

/
(p−1)/2

ℓ

02

tℓ

= 1 + (−1)
p+1

2 ∑
ℓ≥0

/
−1/2

ℓ

02

tℓ

=: P̂(t).

For the last step, we use the definition (in Fp)
/
−1/2

ℓ

0
:=

−1/2 · −3/2 · · · · · (−1/2 − ℓ+ 1)
ℓ!

,

which is evidently 0 when p > ℓ > p−1
2 (since −1

2 − p+1
2 + 1 =

−1−p−1+2
2 = p

2 = 0), and equals (
p−1

2
ℓ
) for 0 ≤ ℓ ≤ p−1

2 (and is de-
fined to be 0 for ℓ ≥ p). We conclude:

24.2.2. PROPOSITION. P̂(t) counts (mod p) the Fp-points of Et.

Notice that

(24.2.3) P̂(t) is a “mod p” version of the period P(t) from §23.6!

24.3. COUNTING Fp-POINTS ON THE HESSE CUBIC 303

24.3. Counting Fp-points on the Hesse cubic

For this section, take p to be an odd prime with p ≡ −1 mod 3.
I can’t resist doing the same exercise for the other main example

from the last chapter, namely

Et = {XYZ = t(X3 + Y3 + Z3)}

where again we assume t ∈ Z, but not divisible by p. This has affine
form

xy = t(x3 + y3 + 1)

and toric form

1 = t(x2y−1 + x−1y2 + x−1y−1)
+ ,- .

=:ϕ(x,y)

,

where the Laurent polynomial ϕ(x, y) is defined for (x, y) ∈ (F∗
p)

2.
Using the toric form and Lemma 24.1.3, it is easy to compute the
F∗

p-points
E∗

t (Fp) := Et(Fp) ∩ (F∗
p)

2.

Namely, we have

|E∗
t (Fp)| ≡

(p)
− ∑
(x,y)∈(F∗

p)2

p−1

∑
k=1

tk (ϕ(x, y))k ,

the point being (besides the Lemma) that tϕ(x, y) is 1 (in Fp) for ex-
actly those (x, y) on Et. Switching the order of summation this be-
comes

(24.3.1) = −
p−1

∑
k=1

tk ∑
(x,y)∈(F∗

p)2

ϕ(x, y)k.

Now by Lemma 24.1.1

∑
(x,y)∈(F∗

p)2

xiyj =

%

' ∑
x∈F∗

p

xi

(

*

%

' ∑
y∈F∗

p

yj

(

* =

K
1, p − 1 | i, j
0, otherwise

.

304 24. ELLIPTIC CURVES OVER FINITE FIELDS

For k ∈ [1, p − 2],

(ϕ(x, y))k = [ϕk]0 +

K
terms with powers of x, y
not both divisible by p − 1

L
.

Our assumption on p implies that 3 ∤ p − 1, and so

(ϕ(x, y))p−1 = [ϕp−1]0 + x2(p−1)y−(p−1) + x−(p−1)y2(p−1)

+x−(p−1)y−(p−1) +

K
terms with powers of x, y
not both divisible by p − 1

L
.

(In particular, there are no x−(p−1), y−(p−1), xp−1y−(p−1), x−(p−1)yp−1,
xp−1 or yp−1 terms.) So (24.3.1) becomes

≡
(p)

−
p−1

∑
k=1

tk[ϕk]0 − tp−1 · 3.

Recall from §23.2 that [ϕk]0 = (3m
m,m,m) if k = 3m (and 0 if 3 ∤ k).

On the other hand, looking along the coordinate axes X = 0,
Y = 0, Z = 0 we get (only) the points

[1 : −1 : 0] , [0 : 1 : −1] , [−1 : 0 : 1]

in Et(Fp). For example, along Z = 0 (on Et) we must have X, Y ∕= 0
and so may assume Y = 1; then the equation is X3 + 1 = 0. This has
only X = −1 as solution: otherwise we would have an element of
order 6 in F∗

p, so 6 | p − 1, contradicting our assumption on p.
We conclude that1

|Et(Fp)| ≡
(p)

3(1− tp−1)−

'
p−1

3

(

∑
m=1

/
3m

m, m, m

0
t3m ≡

(p)
− ∑

m≥1

/
3m

m, m, m

0
t3m,

again very reminiscent of the P(t) from (23.2.1)!

24.4. Deep reasons for (24.2.3)

With two examples to support it, this amazing relationship be-
tween periods and point-counts can’t be a coincidence. I am going

1again with the convention that the multinomial symbol is zero for m ≥ p (and
the observation that it is zero for p−1

3 < m < p).

24.4. DEEP REASONS FOR (24.2.3) 305

to explain why it happens in the first example, though the second
one is quite similar.

The issue is this: in §23.2, why on earth does |Et(Fp)| − 1 (not
counting the point at ∞) appear to solve the Picard-Fuchs equation#

t(t − 1)D2
t + (2t − 1)Dt +

1
4

$
(·) = 0 ? Indeed, P̂(t)− 1 = ±1

2π P(t),
where P(t) is the solution from §23.6!! The two computations were
quite elementary, after all, so maybe there’s an elementary explana-
tion for their equivalence?

Not so! This is dealt with in [Clemens, “A scrapbook of complex
curve theory,” pp. 65-69] and I’ll just give a hint of the flavor here. It
involves an algebro-geometric version of the Lefschetz trace formula
(the formula from topology for the number of fixed points of a map-
ping), the Riemann-Roch theorem, Serre duality, and abstract sheaf
theory. However, it isn’t hard to summarize.

Consider Et over Fp, t ∈ Fp. Then writing FP for “number of
fixed points”, and f robp for the map [Z : X : Y] +→ [Zp : Xp : Yp],

|Et(Fp)| = FP
@

f robp : Et(Fp) → Et(Fp)
A

.

This should make sense to you because as an automorphism of Fp,
the pth-power (Frobenius) map fixes exactly the elements of Fp. By
the Lefschetz-type theorem, it turns out that this

≡
(p)

1 − trace
I

f rob∗p|H1(Et/Fp,O)

J

where the H1 is sheaf cohomology computed with respect to the
Zariski topology, O is the sheaf of regular functions, and f rob∗ is
the action by pullback (under f robp) on cohomology classes.

This H1 is a 1-dimensional vector space, with generator repre-
sented by a certain rational function h with two simple poles, at
q = [1 : 0 : 0] and some other point p ∈ Et(Fp). More precisely,
H1(Et/Fp,O) is isomorphic to the space of rational functions on Et

with poles allowed only at P and Q modulo the subspace of rational
functions with poles allowed at either P or Q (not both).2 You should

2That this space is 1-dimensional in the more familiar complex case is Exercise (2).

306 24. ELLIPTIC CURVES OVER FINITE FIELDS

also note that pulling back by f robp stabilizes the vector space we
have just described, since (as P, Q are taken to be in Et(Fp) rather
than Et(Fp)) P and Q are fixed under f robp. So the displayed ex-
pression at least makes sense.

Next, we expand h in formal power series h = 1
y + ∑ℓ≥0 bℓyℓ

about q,3 and also expand a generator ωt ∈ Ω1(Et/Fp) (regular dif-
ferentials) as [∑k≥1 ak(t)yk−1]dy, where a1(t) = 1. Recall also from
the complex case, that residues of meromorphic functions require,
and depend on, a choice of local coordinate; while residues of mero-
morphic 1-forms are invariant (i.e. require no such choice, as they
can already be integrated around a loop without appending a “dz”).
So for functions F with a pole at Q, we take residue by computing
Resq(Fω); if F has no other pole, then (as residues sum to zero) the
residue has to be zero.

Now, writing τ for the trace of f rob∗p above, we have

f rob∗ph (= h ◦ f robp) =
1

yp + ∑ℓ≥0 bℓyℓp = τh + f + g.

(The last equality, in which f has only a pole at q and g has only a
pole at P, is by 1-dimensionality of H1(Et,O) and the “explicit de-
scription” we gave of it. In that vector space, this reads f rob∗[h] =
τ[h].) Moreover, ResQ(hωt) = 1 while

τ = τResQ(hωt) + ResQ(f ωt) + ResQ(gωt)

= ResQ((f rob∗ph) · ωt)

= ap(t),

with the last equality obtained by multiplying out the explicit ex-
pressions for f rob∗ph and ωt. So we end up with

|Et(Fp)| ≡
(p)

1 − ap(t),

and (like the periods of ωt) ap(t) must satisfy the Picard-Fuchs equa-
tion because [ωt] does. Again, the “regular” solution of DPF(·) = 0
is unique up to scale, and from there we are essentially done.

3Note that y gives a local coordinate about [1 : 0 : 0] on Et; x does not.

24.5. THE GROUP LAW ON E(Fp) 307

In general, a matrix for the transformation f rob∗p ∈ End(H1(C,O))

(for a projective curve C/Fp) is called a Hasse-Witt matrix; for C el-
liptic, this is 1 × 1 and just the τ above. This generalizes to higher
dimension, and its relation to point-counting and periods for Calabi-
Yau varieties has been the subject of much recent research. The ellip-
tic curve cases above are also related to modular forms: for fixed t,
the ap’s reappear as (the mod p reductions of) the pth coefficients of
cusp forms, or (by a beautiful equivalence) as eigenvalues of Hecke
operators.

24.5. The group law on E(Fp)

Let E ⊂ P2 be defined by

F(Z, X, Y) := Y2Z − (X3 + AXZ2 + BZ3) = 0,

with A, B ∈ Z satisfying 4A3 + 27B2 ∕≡
(p)

0 (p an odd prime). Then

E has “good reduction” mod p — that is, it is nonsingular over Fp.
If we define the operation “+” on E(Fp) as in §20.1, the proof of as-
sociativity in §20.3 (which still made use of the topology of E(C) via
the argument from §15.2) is no longer applicable as Fp is not a sub-
field of C. This is easy to overcome by using the Cayley-Bacharach
Theorem from §15.1, see Exercise (3) below.

24.5.1. REMARK. Given [a:b:c] ∈ E(Q), one can scale a, b, c to
be relatively prime integers and reduce mod p to get an element of
E(Fp). While this produces a group homomorphism, it is not usually
surjective. So we really do need a different explanation of associativ-
ity for E(Fp).

Because one can scale projective coordinates, Z-points and Q-
points on a projective curve are the same thing. But on the affine curve
y2 = x3 + Ax + B, by “Z-points” one usually means that x, y ∈ Z.
If one defines E(Z) to mean affine integral points together with O, the
result is usually not closed under “+” (why?) but does contain the
torsion subgroup of E(Q) by a theorem of Nagell and Lutz.

308 24. ELLIPTIC CURVES OVER FINITE FIELDS

By the same arguments as in §20.4, one obtains the formulas
(24.5.2)1
23

24

xP+Q =
#

yQ−yP
xQ−xP

$2
− xP − xQ, yP+Q = −

#
yQ−yP
xQ−xP

$
(xP+Q−xP)− yP

x2P =
#

3x2
P+A
2yP

$2
− 2xP, y2P = −

#
3x2

P+A
2yP

$
(x2P − xP)− yP

relating affine coordinates of P, Q, and P + Q (in E(Fp)). Exactly as
at the beginning of §24.2, we have the point-count formula4

(24.5.3) |E(Fp)| = 1+ p + ∑
x∈Fp

#
x3+Ax+B

p

$
≡
(p)

1+ ∑
x∈Fp

#
x3+Ax+B

p

$
.

The Hasse bound (which we won’t prove) gives the related estimate

(24.5.4)
??|E(Fp)|− p − 1

??≤ 2
√

p

24.5.5. EXAMPLE. Let E have affine equation y2 = x3 − 2x − 3
over F7, and consider P := (3, 2). By (24.5.2), 2P = (2, 6), 3P =

2P + P = (4, 2), 4P = (0, 5), 5P = (5, 0), 6P = (0, 2), 7P = (4, 5),
8P = (2, 1), 9P = (3, 5), and 10P = (3, 2) + (3, 5) = O. This gives a
cyclic subgroup of order 10 in E(F7).

There are two ways to check that these are all the points and
E(F7) ∼= Z/10Z: use (24.5.3) or (24.5.4). For instance, the Hasse
bound is 3 ≤ |E(F7)| ≤ 13, while Lagrange’s theorem from group
theory gives 10

??|E(F7)|.

24.5.6. EXAMPLE. Consider y2 = x3 − x over F71. Since x3 − x is
an odd function, and (−a

71) = −(a
71) (as −1 isn’t a square mod 71),

the sum in (24.5.3) cancels out, and |E(F71)| = 72 = 8 · 9. Let E2 :=
{P ∈ E(F71) | 8P = O} and E3 := {Q ∈ E(F71) | 9Q = O}. Basic
structure theory of abelian groups tells us that E(F71) = E2 × E3. As
they are abelian, there are three possibilities for E2 and two for E3; to
determine them see Exercise (4).

4Here (a
p) is the Legendre symbol, which is 1 if a is a nonzero square mod p, 0 if p | a,

and −1 if a is not a square mod p; it is computed by a
p−1

2 (in Fp) hence satisfies
(ab

p) = (a
p)(

b
p).

24.6. ELLIPTIC CRYPTOSYSTEMS 309

24.6. Elliptic cryptosystems

Given P, Q ∈ E(Fp), with Q ∈ 〈P〉 (the group generated by
P), and N := |〈P〉|, there exists a unique solution n =: logP(Q) ∈
Z/NZ to nP = Q. We may think of this elliptic discrete logarithm
(EDL) as defining an isomorphism

(24.6.1) logP : 〈P〉 → Z/NZ

of groups. The terminology comes from the analogy between E(Fp)

and the (multiplicative) group (Z/pZ)∗.
While (24.6.1) is (without a quantum computer) very difficult to

compute for large p, its inverse is not. To compute nP quickly — in
time proportional to log2 p — we may use “double-and-add”, writ-
ing n in binary as as n0 + n12 + · · · + nr2r (ni = 0 or 1) and nP
as n0P + n1(2P) + n22(2P) + · · ·+ nr2(2r−1P). The elliptic El Gamal
cryptosystem gives a simple example of how one can take advantage
of this to provide secure communications over a public channel:

• Sender and Receiver agree publically on a prime p, elliptic curve
E, and P ∈ E(Fp).

• Receiver chooses a private key n ∈ Z, computes and sends the
public key Q := nP to Sender.

• Sender wants to send a message M ∈ E(Fp). To do this, they
choose a (private) ephemeral key k ∈ Z, and compute/send the
ciphertext (C1, C2) := (kP, M + kQ) to Receiver.

• Receiver decrypts the ciphertext, by computing C2 − nC1 = M +

kQ − nkP = M + knP − nkP = M.

It turns out that while the difficulty of the ordinary discrete log prob-
lem (in (Z/pZ)∗) grows “sub-exponentially” in log2(p), that of com-
puting the EDL grows exponentially (like

√
p). Roughly speaking,

implementing the above scheme with 50 digit numbers for p, A, and
B will give security equivalent to 200 digits in the “ordinary” equiv-
alent, with much greater efficiency.

24.6.2. REMARK. What is a “message in E(Fp)”? One can imagine
converting a message into a number in Fp, but this may not be (say)

310 24. ELLIPTIC CURVES OVER FINITE FIELDS

the x-coordinate of a point in E(Fp). A way around this defect is
suggested in Exercise (6).

Exercises
(1) Check that Et(Fp) is closed under f robp, for Et as in §24.4 and

t ∈ Fp.
(2) Let E ⊂ P2 be a smooth cubic over the complex numbers, and

p, q ∈ E(C) two distinct points. Let V be the vector space of
meromorphic functions on E with poles only at p and q, with sub-
spaces Wp and Wq (the meromorphic functions with poles only at
p and q respectively). Using Abel’s theorem, prove that the di-
mension of V/(Wp +Wq) is one. [Hint: you will also need to use
the fact that ω ∈ Ω1(E) has no zeroes, and that the “residues”
of F ∈ V given by Resp(Fω) and Resq(Fω) must sum to zero (cf.
Prop. 13.1.10(b)).]

(3) Use Cayley-Bacharach to prove associativity for (E(Fp),+).
[Hint: You need to show that P, Q + R, and (P + Q) ∗ R are
collinear. Take C, D, E in Th. 15.1.2 to be LPQ ∪ LQ∗R,O ∪ LP∗Q,R,
E, and LQR respectively; this will produce a quadric Q. Then
consider the intersection of LP∗Q,O and Q.]

(4) Determine E2 and E3 in Example 24.5.6 as follows: (a) for E2,
count the 2-torsion points in E(F71) and the 2-torsion elements
in the 3 abelian groups of order 8. (b) For E3, compute the (affine
equation for the) Hessian curve of y2 = x3 − x, and use this to
bound the number of 3-torsion points of E(F71).

(5) With E given by y2 = x3 − x, find the group structure of E(F5)

and E(F11).
(6) Modify the encryption-decryption scheme (last 2 steps) in the el-

liptic El Gamal system of §24.6 as follows: Sender has a mes-
sage (m1, m2) ∈ Fp × Fp and sends the ciphertext (R, (c1, c2)) :=
(kP, (xkQc1, ykQc2)). As Receiver, use T = nR = (xT, yT) to de-
crypt the message (how?).

