
CHAPTER 25

The algebraicity of global analytic objects

To kick off the next part of this course, on curves of higher genus,
this chapter will demonstrate two approaches to the following re-
sult: meromorphic (or holomorphic) functions and forms on normalizations
of algebraic curves, all arise as pullbacks of functions and forms on projec-
tive space constructed from rational functions (quotients of homogeneous
polynomials) and their differentials. This is a special instance of Serre’s
GAGA principle (“global analytic is global algebraic” in the projec-
tive setting), and is proved (in §25.1) using techniques from Chapter
8 together with the primitive element theorem. The related fact that
any compact complex-analytic subvariety1 X ⊂ Pn is a projective
algebraic variety is checked for curves in P2 in Exercise (2).

For holomorphic forms, we would like a more precise result (al-
ready hinted at in Remark 21.1.1) on how to think of the holomorphic
forms on a normalization “rationally”. It is important at this point to
recall part (B) of the Normalization Theorem 3.2.1, which says that
every Riemann surface can be obtained as the normalization of an algebraic
curve in P2, even one with only nodal (ordinary double point) sin-
gularities. So in the course of analyzing nodal curves in §25.2 we
will actually have proved (cf. Prop. 25.2.4(c)) that for any Riemann
surface M of genus g,

dim(Ω1(M)) = g.

Featuring prominently in this section is the space of homogeneous
polynomials vanishing at the set of nodes, which will play a key role
in the proof of Riemann-Roch in the next chapter.

1This means that in a neighborhood (in Pn) of each point p ∈ X, X is the zero-locus
of a finite set of holomorphic functions.
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25.1. Chow’s theorem for algebraic curves

Let C ⊂ P2 be an irreducible projective algebraic curve of de-
gree d; applying a projective transformation if necessary we have
[0:0:1] /∈ C. Start by normalizing C; that is, express it as the image
of a morphism σ : XC →

!
P2\{[0 : 0 : 1]}

"
. One may evidently pro-

duce meromorphic functions on the Riemann surface XC, by pulling
back the rational functions C(x, y) under σ∗. (Recall x = X

Z , y = Y
Z

on P2; and the field C(x, y) consists of all quotients of homogeneous
polynomials in X, Y, Z of the same degree.) More precisely,2 writing
C(x, y)C for the subring of rational functions whose polar set does
not contain C, define the field of rational functions on XC by

C( XC) := σ∗C(x, y)C.

Next we consider the projection

π :
#

P2\{[0 : 0 : 1]}
$
↠ P1

[Z : X : Y] +→ [Z : X],

whose composition π̃ := π ◦ σ with the normalization presents XC as
a d-sheeted3 branched cover of P1. Write B (⊂ P1) for the branch
locus, and Γ for a path containing B with P1\Γ simply connected
(cf. §8.2). We have inclusions

(25.1.1)
π̃∗C(x) ⊂ C( XC) ⊂ K(C̃)

rat’l mero.
fcns. fcns.

,

where the first is obtained by noting π∗C(x) ⊂ C(x, y)C and

π̃∗C(x) = σ∗π∗C(x) ⊂ σ∗C(x, y)C.

Now, one might initially speculate that the right-hand inclusion
of (25.1.1) is proper when C has singularities such as nodes, since: (a)

2In more commutative-algebraic terms: if C has affine equation f = 0, f ∈ R :=
C[x, y], then the coordinate ring of C is R/( f ), with fraction field C(C̃); while
C(x, y) is the fraction field of R and C(x, y)C is the localization R( f ).
3By Bézout, the mapping degree deg(π̃) = d (= deg(C)).
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a node has 2 preimage points p, q ∈ XC, (b) at first glance the pullback
of a function would seem to have the same value at p and q, and (c)
meromorphic functions on XC ought to be able to take different values
at distinct points, right? The weak link in this chain of reasoning is
(b), as you can see from the following

25.1.2. EXAMPLE. C = {Y2Z = X2(X − Z)} has tangent lies Y =

±X at its ODP [1 : 0 : 0]. The pullback of x
y to XC therefore takes

values 1 and −1 (resp.) at the 2 points lying over the ODP.

The point is that rational functions are not well-defined at all
points of P2, and this can be used to our advantage to get “more”
functions on singular curves. So it becomes plausible that the right-
hand inclusion of (25.1.1) is an equality, and that is exactly what we
shall prove in the rest of the section.

To that end, let ϕ ∈ K( XC)∗ be a nonzero meromorphic function,
and denote by P the set of poles of ϕ. Writing4

(25.1.3) 0 = f (x, y) = yd + a1(x)yd−1 + · · ·+ ad(x)

for the affine equation of C, we have as in §8.2 distinct solutions
{yj(x)}d

j=1 to f (x, ·) = 0 over P1\Γ, which are interchanged as one
passes through Γ\B. Moreover, by irreducibility of C (hence f ),
(25.1.3) is the minimal polynomial of σ∗y, proving that

(25.1.4) [C( XC) : π̃∗C(x)] ≥ d.

For each x ∈ P1\(Γ∪ π̃(P)), one can think of (x, yj(x)) as belong-
ing to XC with π̃(x, yj(x)) = x. Consider the elementary symmetric
polynomials (i = 0, . . . , d, with eϕ

0 = 1)

eϕ
i (x) := ei (ϕ(x, y1(x)), . . . , ϕ(x, yd(x))) ,

which are well-defined and holomorphic on P1\(B ∪ π̃(P)). As
in §8.2, the fact that they are bounded away from π̃(P) guarantees
(by Riemann) their extension to holomorphic functions on P1\π̃(P).

4As in §8.2, we may change projective coordinates if necessary to put the equation
in this form.
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Further, if x0 ∈ π̃(P) has neighborhood ∆x0 ⊂ P1, then for k ∈ N

sufficiently large, ϕ̂ := π̃∗((x− x0)
k) · ϕ is holomorphic in π̃−1(∆x0) ⊂

XC. By the same argument (from §8.2), eϕ̂
i (x) extends holomorphically

across x0; but since eϕ̂
i (x) = (x − x0)

ik · eϕ
i (x), eϕ

i (x) extends meromor-
phically across x0. Repeating this argument at all points of π̃(P), we
find that

eϕ
i ∈ K(P1);

and by Theorem 3.1.7(a) K(P1) ∼= C(x).
Next observe that for any x ∈ P1\(Γ ∪ π̃(P)) and j ∈ {1, . . . , d},

0 =
d

∏
i=1

!
ϕ(x, yj(x))− ϕ(x, yi(x))

"

= ϕ(x, yj(x))d − eϕ
1 (x)ϕ(x, yj(x))d−1

+ eϕ
2 (x)ϕ(x, yj(x))d−2 − · · ·+ (−1)deϕ

d (x) ;

that is, for a dense subset of points p ∈ XC, ϕ(p) satisfies the equation

0 =
d

∑
i=0

(−1)ieϕ
i (π̃(p)) · ϕ(p)d−i.

Therefore the meromorphic function ϕ itself satisfies

(25.1.5) 0 =
d

∑
i=0

(−1)i(π̃∗eϕ
i ) · ϕd−i,

with coefficients in π̃∗C(x); and so K(C̃) is algebraic over π̃∗C(x).
Finally, in characteristic zero, the primitive element theorem says

that any finite field extension (of degree n) is generated by a single el-
ement (of degree n). (An infinite algebraic field extension will there-
fore have elements of unbounded degree.) Were [K( XC) : π̃∗C(x)] >
d, finite or not, there would thus be an element of degree > d; but as
ϕ ∈ K( XC) was arbitrary, (25.1.5) shows this is not so. Hence

[K( XC) : π̃∗C(x)] ≤ d.

Putting this together with (25.1.1) and (25.1.4), we see that

K( XC) = C( XC),
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proving the

25.1.6. THEOREM. Every meromorphic function on the normalization
of an irreducible projective algebraic curve is rational, i.e. the pullback of a
ratio of homogeneous polynomials.

25.1.7. COROLLARY. Every meromorphic 1-form on a normalization
is rational (i.e. f dg where f , g are rational).

PROOF. Consider (say) σ∗(dx) =: ω ∈ K1( XC), and let ω′ ∈
K1( XC) be any other meromorphic 1-form on XC. Then ω′

ω belongs to
K( XC), hence is rational by Theorem 25.1.6. □

25.2. Cohomology of a Riemann surface

Let M be a Riemann surface of genus g. Recall from §21.1 that
the 1st homology group H1(M, Z) =

1-cycles
boundaries is an abelian group of

rank 2g, and define M’s 1st cohomology group to be the 2g-dimensional
vector space of complex-linear functionals

H1(M, C) := Hom(H1(M, Z), C).

Exactly as in §23.3 (for elliptic curves) we have the de Rham cohomol-
ogy groups

H1
dR(M) :=

ker{A1(M)
d→ A2(M)}

image{A0(M)
d→ A1(M)}

=
closed C∞ 1-forms
exact C∞ 1-forms

.

To any closed 1-form ω we may assign the functional γ +→
´

γ ω on
loops. By the first 2 paragraphs of the proof of Lemma 23.3.1 (which
work for any M), this induces a well-defined injective map

(25.2.1) H1
dR(M) ↩→ H1(M, C).

Surjectivity also holds but will require a little more work than for
elliptic curves.

Writing Ω1(M) for the space of “anti-holomorphic” forms (the
complex conjugates of holomorphic ones), we can embed

(25.2.2) Ω1(M)⊕ Ω1(M) ↩→ H1
dR(M)
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via
(ω, ϕ) +→ [ω + ϕ].

The map (25.2.2) is well-defined because d(Ω1(M)) = 0 = d(Ω1(M))

(cf. Remark 23.3.2(a)). To prove injectivity, suppose ω + ϕ = d f ,
f ∈ A0(M). Then

d( f ϕ) = f dϕ
+,-.
=0

+ d f ∧ ϕ = (ω + ϕ) ∧ ϕ = −ϕ ∧ ϕ

since ω ∧ ϕ looks locally like a function times dz ∧ dz(= 0). Now
breaking M up into triangular regions ∆i with local holomorphic co-
ordinates zi = xi +

√
−1yi,

ˆ

M
ϕ ∧ ϕ = ∑

i

ˆ

∆i

gidzi ∧ gidzi = −2
√
−1∑

ˆ

∆i

|gi|2dxi ∧ dyi

+ ,- .
.

∈R≥0

Since each integral = 0 ⇐⇒ gi ≡ 0, we have
ˆ

M
ϕ ∧ ϕ = 0 ⇐⇒ ϕ ≡ 0.

But using Stokes’s theorem and ∂M = ∅,
ˆ

M
ϕ ∧ ϕ = −

ˆ

M
d( f ϕ) = −

ˆ

∂M
f ϕ = 0

which implies ϕ ≡ 0. So d f = ω =⇒ ∂ f
∂z̄ = 0 =⇒ f ∈ O(M) =⇒

f constant (by Liouville) =⇒ ω = 0. So (25.2.2) is injective.
By now you are quite familiar with the fact that dim(Sd−3

3 ) =

((d−3)+2
2 ) = (d−1)(d−2)

2 . If S is a set of δ points in P2, then the ho-
mogeneous polynomials of degree d − 3 vanishing on each of these
points are subject to δ (possibly dependent) linear conditions. Denot-
ing the space of such polynomials by Sd−3

3 (−S), we therefore have

(25.2.3) dim(Sd−3
3 (−S)) ≥ (d − 1)(d − 2)

2
− δ.

Now assume σ : M → P2 is injective off a finite point set, with
image an irreducible algebraic curve C = {F(Z, X, Y) = 0} of de-
gree d (F ∈ Sd

3), having only nodal singularities (as in part (B) of the
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Normalization Theorem). Write S for the collection of these nodes,
and note that M = XC. By (25.2.3) and the genus formula,

dim(Sd−3
3 (−S)) ≥ g.

By Exercises (3)-(4), we have a map

Sd−3
3 (−S) → Ω1(M)

given by

G +−→ σ∗
/

g dx
fy

0
=: ωG

where g(x, y) = G(1, x, y) etc. This is necessarily injective: were gdx
fy

to vanish on C, we would have G ≡ 0 on C; since F is irreducible then
F|G by Study, which is impossible (unless G is trivial) as deg(G) =

d − 3 < d = deg(F).
Likewise, sending G +→ ωG gives an injective map from Sd−3(−S)

to Ω1(M). All told, we have a sequence of injective maps of complex
vector spaces

Sd−3
3 (−S)⊕Sd−3

3 (−S) ↩→ Ω1(M)⊕Ω1(M) ↩→ H1
dR(M) ↩→ H1(M, C).

Notice that the left-hand side has dimension ≥ 2g and the right-
hand side has dimension exactly 2g. All the injections are therefore
isomorphisms and we conclude:

25.2.4. PROPOSITION. For a Riemann surface M (of genus g) nor-
malizing an algebraic curve of degree d with nodes S = {p1, . . . , pδ}, the
holomorphic 1-forms are all pullbacks of rational forms gdx

fy
(as described

above). Moreover, we have:

(a) [DE RHAM THEOREM] H1(M, C) ∼= H1
dR(M);

(b) [HODGE DECOMPOSITION] H1
dR(M) ∼= Ω1(M)⊕ Ω1(M); and

(c) dim Ω1(M) = g = (d−1)(d−2)
2 − δ = dim(Sd−3

3 (−S)).

We also get an application to the period matrices Π described in
§21.1. Recall that if γ1, . . . , γ2g is a basis for H1(M, Z) and ω1, . . . , ωg
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a basis for Ω1(M), then

Π =

%

&&'

´

γ1
ω1 · · · · · ·

´

γ2g
ω1

... . . . . . . ...
´

γ1
ωg · · · · · ·

´

γ2g
ωg

(

))* .

25.2.5. PROPOSITION. Viewed as vectors in R2g(∼= Cg), the columns
πj of Π are R-linearly independent.

PROOF. Suppose otherwise, i.e. that there exists a nonzero vector
a ∈ R2g satisfying

0 = Πa ;

then we have also (by complex conjugating)

0 = Πa.

That is, 7
Π
Π

8
a = 0

and so the rank of

7
Π
Π

8
is less than 2g. But then there is a nonzero

b ∈ C2g such that

tb

7
Π
Π

8
= t0 ,

which means explicitly for each j that
ˆ

γj

(
g

∑
i=1

biωi

+ ,- .
=:ω

+
g

∑
i=1

bg+1ωi

+ ,- .
=:ϕ

) = 0.

Thus (ω, ϕ) ∈ Ω1(M)⊕Ω1(M) goes to zero in Hom(H1(M, Z), C) =

H1(M, C). By our sequence of injections above, ω = ϕ = 0. But
since b ∕= 0, this contradicts linear independence of ω1, . . . , ωg in
Ω1(M). □
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Exercises
(1) Write a basis for the holomorphic 1-forms on the (smooth) curve

C ⊂ P2 with affine equation 1 + x6 + y6 − xy5 = 0. What is
dim(Ω1(C))?

(2) Adapt the proof of Proposition 8.2.7 to show that any (closed)
complex analytic curve C ⊂ P2 (i.e., a subset which in a neigh-
borhood of any point is cut out by the vanishing of a noncon-
stant holomorphic function) is in fact algebraic (cut out globally
by a homogeneous polynomial). [Suggestion: by applying a pro-
jectivity, you may assume that [0:1:0] is not in C. Note that the
intersection of C with any vertical line x = x0 is finite; in a neigh-
borhood of each intersection point (x0, y0), C can be described
by a Weierstrass polynomial in y − y0 as in Chapter 10. Multi-
ply these together to get an element of C{x − x0}[y], monic in y,
cutting out C for |x − x0| < ρ (and all y). Argue that these local
elements patch together to give an element “∏m

λ=1(y − yλ(x))”
in O(C)[y], and then show that O(C) can be replaced by C[x].]

(3) For this and the next problem,5 let C ⊂ P2 be cut out by an irre-
ducible polynomial F ∈ Sd

3 of degree d, with affinization f (x, y) :=
F(1, x, y). In this exercise, C is also assumed to be smooth. Show
that, for any G ∈ Sd−3

3 with affinization g, the form ωG := g dx
fy
|C

is holomorphic. [See the hint for Exercise (4) of Chapter 19, which
this problem continues, and be sure to treat points at infinity and
points with vertical tangent.]

(4) Now suppose that C has a finite set S of singular points, which
are nodes. Write Sd−3

3 (−S) ⊆ Sd−3
3 for the polynomials vanish-

ing on this set. Show that G +→ ωG := σ∗ g dx
fy

defines a map from

Sd−3
3 (−S) to Ω1(C̃), where C̃ σ→ C is the normalization. [Hint:

apply a projectivity to move a node to [1:0:0], with tangent lines
X = 0 and Y = 0; write an expression for the resulting f (x, y).
It suffices to show that if g(0, 0) = 0, then σ∗ωG is holomorphic

5The result of Exercises (3)-(4) is also proved in Chapter 3 of Griffiths’s Introduc-
tion to Algebraic Curves.
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at the two preimage points. You don’t need much detail about
the local normalizations; e.g., that the branch with tangent y = 0
has a parametrization of the form t +→ (t, tnh(t)) (with n ≥ 2 and
h(0) ∕= 0) is more than enough.]


