
CHAPTER 26

The Riemann-Roch Theorem

As you know, there are no nonconstant holomorphic functions
on a Riemann surface M. What if we allow a simple pole at one
point p but no poles anywhere else? Then you still get nothing, un-
less M is P1 (in which case there is (z − z(p))−1). This is because
for g = genus(M) ≥ 1, there is a nonzero holomorphic form ω

which doesn’t vanish at p. For any meromorphic function f on M,
we know that ∑q∈M Resq( f ω) = 0; so if f has a simple pole at p, then
Resp( f ω) ∕= 0 and f must have another pole to cancel this term.

What if we are prepared to allow a double pole at p (but still no
other poles)? Then the answer is more complex; if g = 0 or 1 there are
nonconstant such functions (e.g. the Weierstrass ℘-function), while
if g ≥ 2 it can depend on the point p. In general, the vector spaces
of meromorphic functions f with (at most) a single pole at p and
νp( f ) ≥ −k has dimension ≥ max{1, k − g + 1}. You are guaranteed
to get something nonconstant as soon as k − g + 1 ≥ 2.

In the 1850’s, Riemann proved a more general inequality which
replaces p (and k) by multiple points and orders; a decade later, his
student Roch turned this into an exact equality (Theorem 26.2.7 be-
low) incorporating another term related to meromorphic 1-forms. It
encompasses the equality dim(Ω1(M)) = g and gives a powerful
tool for studying embeddings of Riemann surfaces into higher di-
mensional projective spaces, among other things. Its statement is in
terms of spaces of functions and forms related to divisors, and we
will start in §26.1 by defining these spaces precisely.

You may prefer this shorter introduction to the topic from a lec-
ture by Lefschetz: “Well, a Riemann surface is a certain kind of Haus-
dorff space. You know what a Hausdorff space is, don’t you? It’s
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324 26. THE RIEMANN-ROCH THEOREM

also compact, ok. I guess it is also a manifold. Surely you know
what a manifold is. Now let me tell you one nontrivial theorem, the
Riemann-Roch Theorem.”1

26.1. Effective divisors and rational equivalence

Let M be a Riemann surface, and write D = ∑p∈M mp[p] and
E = ∑p∈M np[p] for divisors on M. (Of course, only finitely many
mp and np are nonzero.) If for all p mp ≥ np, then we write D ≥ E.

26.1.1. DEF INITION. D ∈ Div(M) is effective ⇐⇒ D ≥ 0.

26.1.2. EXAMPLE. The divisor (ω) of a holomorphic 1-form ω is
effective. (Why?)

We can use this idea to put constraints on meromorphic functions
and forms. For instance, suppose D = 3[q] − 2[r], and f ∈ K(M)

with divisor ( f ) = ∑p∈M νp( f )[p]. Then imposing the inequality
( f ) + D ≥ 0 forces νq( f ) + 3 ≥ 0 and νr( f ) − 2 ≥ 0; that is, f is
allowed a pole of order no worse than −3 at q, and must have a zero
of order at least 2 at r. Likewise, if ω ∈ K1(M) then (ω) ≥ D means
ω has a zero of order at least 3 at q, and is allowed a pole of order no
worse than −2 at r. The next definition formalizes this and defines
the quantities which the Riemann-Roch theorem will relate.

26.1.3. DEF INITION. For any D ∈ Div(M), set

L(D) := { f ∈ K(M)∗ | ( f ) + D ≥ 0} ∪ {0} and

I(D) := {ω ∈ K1(M)∗ | (ω) ≥ D} ∪ {0}.

(The “∪{0}” just means that the zero-function is included, so as to
produce a vector space.) Write

ℓ(D) := dimL(D) , i(D) := dim I(D).

The next step is to define an equivalence relation on divisors
which is ubiquitous in algebraic geometry.

1from A Beautiful Mind by S. Nasar
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26.1.4. DEF INITION. Divisors D, E ∈ Div(M) are rationally equiv-

alent iff there exists2 f ∈ K(M)∗ with ( f ) = D − E; we write D
rat≡ E.

26.1.5. PROPOSITION. If D
rat≡ E, then

(i) deg(D) = deg(E);
(ii) L(D) ∼= L(E);

(iii) I(D) ∼= I(E); and
(iv) ℓ(D) = ℓ(E) and i(D) = i(E).

Furthermore,
rat≡ respects the abelian group structure of Div(M).

PROOF. By assumption D − E = ( f ). Now Exercise (2) of Ch. 3
says that deg(( f )) = 0, which yields (i). Given g ∈ L(D),

( f g) + E = ( f ) + (g) + E = (g) + D ≥ 0 ;

so g +→ f g defines a map L(D) → L(E), and h +→ h
f defines an

inverse map. This gives (ii), and (iii) is done in the same way. (iv)

obviously follows from (ii)-(iii). The last statement about
rat≡ is essen-

tially just that (D + ( f )) + (E + (g)) = (D + E + ( f g)). □

26.1.6. REMARK. The Picard group Pic(M) of §21.1 is the group of
equivalence classes

Div(M)
rat≡

,

and Proposition 26.1.5 says (in part) that deg, ℓ, and i give well-
defined functions from Pic(M) to Z. In particular, deg is a homo-
morphism, and writing Pic0(M) := ker(deg) ⊂ Pic(M) recovers the
“degree-zero part” seen in Ch. 21.

26.1.7. DEF INITION. A canonical divisor K ∈ Div(M) is just the
divisor of any meromorphic 1-form ω ∈ K1(M). Since any two such
are rationally equivalent (easy exercise), there is a single canonical
divisor class [K] ∈ Pic(M).

The next (basic) result is sometimes called “Brill-Noether reci-
procity”:

2By Chow’s theorem (§25.1), all meromorphic functions are rational, hence the ter-
minology “rational equivalence” (sometimes also called “linear equivalence”).
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26.1.8. PROPOSITION. Let D ∈ Div(M) be arbitrary, and K a canon-
ical divisor. Then

I(D) ∼= L(K − D),

and so i(D) = ℓ(K − D).

PROOF. Let K = (ω); if ( f ) + K − D ≥ 0, then ( f ω) = ( f ) + K ≥
D − K + K = D. So f +→ f ω maps L(K − D) → I(D), and η +→ η

ω

gives an inverse. □

26.2. Proof and statement

Throughout this section we take C to be an irreducible degree d
projective algebraic curve with nodal singularities S = {p1, . . . , pδ}.
Let M := XC σ→ P2 (σ(M) = C) be its normalization. According to
part (B) of the Normalization Theorem 3.2.1, every Riemann surface
M arises in this way.

Writing σ−1(pi) =: {qi, ri}, we define a divisor

E := σ−1(S) =
δ

∑
i=1

[qi] + [ri] ∈ Div(M)

of degree 2δ. Given any line H ⊂ P2 (“H” for “hyperplane”), put

H := σ−1(H · C) ∈ Div(M)

for the intersection divisor (of degree d).3

26.2.1. LEMMA. For all sufficiently large m ∈ N,

ℓ(mH− E) ≥ md − 2δ − g + 1

and
i(mH− E) = 0,

where g = (d−1)(d−2)
2 − δ is the genus of M.

3If H passes through an ODP pi, then qiand ri will both show up in H, with multi-
plicities determined by the local intersection multiplicities of H with the two local
analytic components of C at pi. (See Defn. 12.2.2ff.)
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PROOF. Write R ∈ S1
3 and F ∈ Sd

3 for the defining homogeneous
polynomials of H and C (resp.). Consider the map

Sm
3 (−S) θ−→ L(mH− E)

G +−→ σ∗
/

G
Rm

0
,

where we note that G
Rm is a well-defined meromorphic function be-

cause numerator and denominator have the same degree. By Study’s
lemma,

σ∗
/

G
Rm

0
≡ 0 ⇐⇒ G|C ≡ 0 ⇐⇒ F|G,

and so ker θ = F · Sm−d
3 (⊂ Sm

3 (−S)).
Therefore, taking dimensions of

L(mH− E) ⊇ im(θ),

we find

ℓ(mH− E) ≥ dim(im(θ)) = dim

7
Sm

3 (−S)
F · Sm−d

3

8

= dim Sm
3 (−S)− dim Sm−d

3 .

Using (25.2.3) (but with m+ 3 replacing d), and assuming m ≥ d, this

≥ (m + 1)(m + 2)
2

− δ − (m − d + 1)(m − d + 2)
2

= md − δ − d(d − 3)
2

= md − δ − (d − 1)(d − 2)
2

+ 1,

which by Prop. 25.2.4(c)

= md − 2δ − g + 1.

Finally, any ω ∈ I(mH− E) \ {0} has (ω) ≥ mH− E , and taking
degrees gives 2g − 2 = deg((ω)) ≥ md − 2δ. Clearly this is unten-
able once m > 2

d (g + δ − 1), whence i(mH− E) = 0. □
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26.2.2. LEMMA. Let D ∈ Div(M), p ∈ M. Then

0 ≤ ℓ(D + [p])− ℓ(D)− (i(D + [p])− i(D)) ≤ 1.

PROOF. First note that L(D) ⊆ L(D + [p]) =⇒ ℓ(D + [p]) −
ℓ(D) ≥ 0.

Next, writing D = ∑q∈M nq[q], an element of L(D + [p])\L(D) is
a function f ∈ K(M)∗ satisfying

(26.2.3) ( f ) + D + [p] ≥ 0 and νp( f ) = −(np + 1).

If f , g are two such functions, then setting α := limx→p
f (x)
g(x) , we have

ordp( f − αg) ≥ −np

so that f − αg ∈ L(D). So ℓ(D + [p])− ℓ(D) ≤ 1, and we conclude

(26.2.4) 0 ≤ ℓ(D + [p])− ℓ(D) ≤ 1.

Similarly, writing K for a canonical divisor,

0 ≤ ℓ(K − D)− ℓ(K − D − [p]) ≤ 1

or equivalently

(26.2.5) 0 ≤ i(D)− i(D + [p]) ≤ 1.

Altogether,

0 ≤ ℓ(D + [p])− ℓ(D) + i(D)− i(D + [p]) ≤ 2

and we just have to show that “2” is impossible.
Suppose (for a contradiction) that f satisfies (26.2.3), which is

equivalent to “1” in (26.2.4), and ω ∈ K1(M) satisfies

(ω) ≥ D and νp(ω) = np,

which is equivalent to “1” in (26.2.5). Then

( f ω) = ( f ) + (ω) ≥ −[p]

with
νp( f ω) = νp( f ) + νp(ω) = −1.
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But the sum of residues of a meromorphic form is 0 (Prop. 13.1.10(b)),
so f ω having a single simple pole (and no other poles) is absurd. □

By Lemma 26.2.1, there exists m0 ∈ Z such that m ≥ m0 =⇒

ℓ(mH− E)− i(mH− E) ≥ md − 2δ − g + 1.

Now for any two lines H1, H2, we have H1
rat≡ H2; so if H1, . . . , Hm

are lines in P2 then by Proposition 26.1.5(iv)

ℓ(H1 + · · ·+Hm − E)− i(H1 + · · ·+Hm − E) ≥ md − 2δ − g + 1.

Taking m large enough and lines through (a) all points of S and (b)
all points in D, we can ensure that ∑m

i=1 Hi − E − D is effective, so
that

H1 + · · ·+Hm − E = D + [P1] + · · ·+ [Pk]

where k = md − 2δ − deg(D) (and the Pj are points of M). Therefore
we have

ℓ

7
D +

k

∑
j=1

[Pj]

8
− i

7
D +

k

∑
j=1

[Pj]

8
≥ k + deg(D)− g + 1.

Repeatedly applying the right-hand inequality of Lemma 26.2.2 gives

k + ℓ(D)− i(D) ≥ ℓ

7
D +

k

∑
j=1

[Pj]

8
− i

7
D +

k

∑
j=1

[Pj]

8

and we conclude that

(26.2.6) ℓ(D)− i(D) ≥ deg(D)− g + 1.

Next we show the reverse inequality. Plugging K−D into (26.2.6),
we have

ℓ(K − D)− i(K − D) ≥ deg(K − D)− g + 1

which becomes (using Brill-Noether reciprocity)

i(D)− ℓ(D) ≥ 2g − 2 − deg(D)− g + 1 = −(deg(D)− g + 1),

so that
ℓ(D)− i(D) ≤ deg(D)− g + 1.
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We have thus proved the

26.2.7. THEOREM. [RIEMANN-ROCH] Let M be a Riemann surface
of genus g, D a divisor on M. Then

ℓ(D)− i(D) = deg(D)− g + 1.

Amongst the easy corollaries of this important result are the Rie-
mann inequality

ℓ(D) ≥ deg(D)− g + 1,

and (by putting D = 0 in the theorem) the formula

dim Ω1(M) = g.

Here is another simple application to whet your appetite for the next
two chapters.

26.2.8. PROPOSITION. Up to isomorphism, P1 is the only Riemann
surface of genus 0.

PROOF. Suppose M has genus 0; then, first of all, the above “corol-
lary of Riemann-Roch” says that dim Ω1(M) = 0. If we take (for
some p ∈ M) D = [p], then I(D) ⊂ Ω1(M) = {0} =⇒ i(D) = 0.
So by Riemann-Roch itself,

ℓ(D) = deg(D)− g + 1 = 1 − 0 + 1 = 2.

Now L(D) consists of functions with a simple pole allowed at p (and
no other poles). The constant function 1 belongs to L(D); and since
dimL(D) = 2 there is also a nonconstant function f ∈ L(D), which
by Liouville must have the allowed simple pole. Therefore the map-
ping degree of f : M → P1 is (cf. §14.1)

deg( f ) = deg( f−1([∞])) = deg([p]) = 1;

that is, f is an isomorphism. □

Exercises
(1) Check that any two canonical divisors on a Riemann surface are

rationally equivalent.
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(2) Let D ∈ Div(M), g = genus(M). Prove that if deg D > 2g − 2,
then i(D) = 0. Likewise show that if deg D < 0, then ℓ(D) = 0.

(3) Let M be a genus g Riemann surface, and p ∈ M. Using Riemann-
Roch, find the smallest value of k for which there must exist f ∈
K(M)∗ having a pole at p of order no worse than k (i.e. νp( f ) ≥
−k), and no other poles.

(4) Let M have genus g ≥ 2. (a) Prove that M has a morphism to P1

of degree ≤ g + 1. [Hint: use Exercise (3)] (b) Prove that M has
a morphism to P1 of degree ≤ g. [Hint: let p ∈ M, and look at
i((g − 2)[p]). This is a bit harder than (a).]

(5) Assume D > 0. By Exercise (2), if g ≤ 1 then i(D) = 0, and
Riemann-Roch becomes ℓ(D) = deg(D) for g = 1 and deg(D) +

1 for g = 0. Prove this directly (a) for M ∼= P1 and (b) for M ∼=
C/Λ (1-torus).


