
CHAPTER 30

Abel’s Theorem, part I

Recall the setup from Chapter 21: M is a Riemann surface of
genus g ≥ 1, with closed paths (“1-cycles”) γi giving a basis {[γi]}

2g
i=1

for H1(M, Z). We have the Jacobian of M, which is the complex g-
torus

J(M) :=
(Ω1(M))∨

H1(M, Z)

∼=→ Cg

ΛM
.

The isomorphism is given by evaluating functionals against a basis
{ω1, . . . , ωg} ⊂ Ω1(M), and ΛM is called the period lattice. The Picard
group

Pic0(M) :=
Div0(M)

(K(M)∗)

of degree-0 divisors modulo rational equivalence is the object we
want to understand. To this end, we had shown that the Abel-Jacobi
map

AJ : Pic0(M) → J(M)

D +→
ˆ

∂−1D

is a well-defined homomorphism, where ∂−1D is just shorthand for
“some 1-chain Γ with ∂Γ = D”. The important content of this is that
AJ(( f )) = 0 for any f ∈ K(M)∗.

By Abel’s theorem we shall always mean the statement that AJ is
injective, that is

(30.0.1) AJ(D) = 0 =⇒ D = ( f ) for some f ∈ K(M)∗ ;

while the surjectivity will be known as Jacobi inversion: i.e.,
(30.0.2)

given any point in J(M) (= any functional on Ω1(M), up to periods),
there exists a divisor D inducing that functional via

´

∂−1D(·).
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358 30. ABEL’S THEOREM, PART I

These statements will be proved in Chapter 31. Our aim here is just
to explain how Abel’s theorem relates to Riemann-Roch and develop
a couple of technical lemmas to be used in the sequel.

Before starting, let’s refine one aspect of the above picture just a
bit. Intersecting 1-cycles γ on M — or more precisely, intersecting
transverse representatives1 of homology classes [γ] — gives a perfect
pairing2

〈 , 〉 : H1(M, Z)× H1(M, Z) → Z.

There is always a symplectic basis of H1(M, Z), which means a gener-
ating subset {[γi]}

2g
i=1 ⊂ H1(M, Z) that satisfies

〈[γi], [γg+j]〉 = δij = −〈[γg+j] · [γi]〉

〈[γi], [γj]〉 = 0 = 〈[γi+g], [γj+g]〉
for 1 ≤ i, j ≤ g (where δij is the Kronecker delta). This is the situation
pictured in §21.1.

We should also remark on what the Picard group is really doing
here. For an elliptic curve E, in Pic0(E) we have [p + q]− [p]− [q] +
[O] ≡ 0, where addition inside the brackets is the group law on
E and outside the brackets means adding divisors. What this says
is: while as divisors (i.e. in the free abelian group on points of E)
[p + q] + [O] ∕= [p] + [q], working modulo rational equivalence we
do have [p + q] + [O] ≡ [p] + [q]. So Pic effectively recovers the
group law on E. Now, curves of higher genus have no group law on
points; but by “linearizing” points and working modulo divisors of
functions, we get a form of generalization of the group law in genus
1. Intriguingly, a more precise form of Jacobi inversion in the next

1Any two given homology classes have representative 1-cycles (say, α, β) which
intersect transversely. At each intersection point p there is a local holomorphic
coordinate z = x + iy, and the tangent vectors vα and vβ to the 1-cycles (which
have well-defined directions) can be wedged to produce an element vα ∧ vβ =

ξp
∂

∂x ∧ ∂
∂y ∈ !2 Tp M (ξp ∕= 0). The intersection is called positively or negatively

oriented depending upon the sign of ξp, and the intersection number [α] · [β] is the
number of positive intersection points minus the number of negative ones.
2This means that the (bilinear) pairing is described (with respect to an integral
basis of H1(M, Z)) by an integrally invertible, i.e. unimodular, matrix.
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chapter will tell us that this may “almost” be seen as a group law on
unordered g-tuples of points on M.

30.1. From Riemann-Roch to Abel-Jacobi

Let D be a divisor on M; we have been interested in the dimen-
sions of the vector spaces L(D) and I(D). In the interval

0 ≤ deg(D) ≤ 2g − 2

is where anything “of interest” lies: outside this range, either ℓ(D)

or i(D) is zero. At the extremes, Abel’s theorem will tell us:

(i) ℓ(D) when deg(D) = 0; and
(ii) i(D) when deg(D) = 2g − 2.

In case (i), if there is a meromorphic function f ∈ K(M)∗ with ( f ) +
D ≥ 0, then

deg(( f ) + D) = deg(( f )) + deg(D) = 0 + 0 = 0

=⇒ ( f ) + D = 0 =⇒ D
rat≡ 0.

In this event, there can be only one such f (up to scale), as

( f ) = −D = (g) =⇒ ( f /g) = 0 =⇒ f /g constant.

Together with similar reasoning in case (ii), and assuming Abel, this
argument proves

30.1.1. PROPOSITION. (i) If deg D = 0, then ℓ(D) = 0 or 1; and

AJ(D) = 0 ⇐⇒ D
rat≡ 0 ⇐⇒ ℓ(D) = 1.

(ii) If deg D = 2g − 2, then i(D) = 0 or 1; and

AJ(K−D) = 0 ⇐⇒ D
rat≡ K ⇐⇒ ℓ(D−K) = 1 ⇐⇒ i(D) = 1.

Another point of contact with the last few chapters comes in the
context of canonical and hyperelliptic curves. First, fix q ∈ M and
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look at the mapping

uq : M −→ J(M)

p +−→ AJ([p]− [q]) =

%

'

´ p
q ω1

...
´ p

q ωg

(

* mod ΛM.

Assuming Abel’s theorem, we have (for genus ≥ 1)

30.1.2. PROPOSITION. (a) uq is injective;
(b) its differential yields the canonical map; and
(c) if M is hyperelliptic and q is a fixed point of ȷ, then uq(M) is sym-

metric with respect to the involution u +→ −u of J(M).

PROOF. (a) Assuming p1 ∕= p2 and uq(p1) = u2(p2), we have

AJ([p1]− [p2]) = 0

Abel
=⇒ ∃ f ∈ K(M)∗ with ( f ) = [p1]− [p2]

=⇒ f : M −→
(∼=)

P1 has degree one,

contradicting g ≥ 1.
(b) Given ω ∈ Ω1(M), we can consider ω(p) ∈ T∗

p M. By the
fundamental theorem of calculus, the differential

duq(p) : TpM −→ Tuq(p) J(M) ∼= Cg

is given by (ω1(p), . . . , ωg(p)). (That is, if ωi
loc
= fi(z)dz, with z(p) =

0, then duq(p) sends ∂
∂z |p +→ ( f1(0), . . . , fg(0)) ∈ Cg.) This associates

a line in Cg to each p ∈ M; projectivizing clearly recovers ϕK : M →
Pg−1 from §28.3.

(c) Using ȷ((x, y)) = (x,−y), we have

uq(ȷ(p)) =

%

&&'

´ ȷ(p)
q=ȷ(q)

dx
y

...
´ ȷ(p)

ȷ(q)
xg−1dx

y

(

))* =

%

&&'

´ p
q ȷ∗ dx

y
...

´ p
q ȷ∗ xg−1dx

y

(

))* =

%

&&'

−
´ p

q
dx
y

...
−
´ p

q
xg−1dx

y

(

))*

= −uq(p). □
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In fact, in the hyperelliptic case it is clear from (c) that the fixed
points of ȷ map to 2-torsion points of J(M).

30.2. Differential forms of the third kind

There is a classical (and passé) terminology for meromorphic dif-
ferential forms on a Riemann surface: “first kind” refers to holo-
morphic forms; “second kind” to meromorphic forms with trivial
residues (and hence no simple poles); and “third kind” to everything
else. In this section we’ll pursue a method for constructing func-
tions with a given divisor (if possible). The title refers to the essential
use we shall make of meromorphic forms with prescribed (nonzero)
residues.

Given p, q ∈ M

i(−[p]− [q]) = g − (−2)− 1 + ℓ(−[p]− [q])
+ ,- .

0

= g + 1 (> g),

so there exists ω ∈ I(−[p]− [q])\Ω1(M). By the residue theorem,

0 = Resp(ω) + Resq(ω)
+ ,- .

both nonzero since poles simple

and we can normalize ω so that

Respω =
1

2π
√
−1

, Resqω =
−1

2π
√
−1

.

For any meromorphic form η, we write (η) = (η)0 − (η)∞ where
(η)0, (η)∞ ≥ 0 are the zero- and polar-divisors.

30.2.1. LEMMA. Given D ∈ Div0(M), there exists3

ηD ∈ I
#
−∑p∈|D|[p]

$

such that

(ηD)∞ = ∑
p∈|D|

[p] and RespηD =
ordp(D)

2π
√
−1

.

3As before, |D| denotes the support of the divisor D, i.e. the finite subset of M com-
prising points that appear in D with nonzero multiplicity. Similarly, the support
|γ| of a 1-cycle γ means that we just consider it as a subset of M.
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PROOF. See Exercise (3). □

Next let D = ∑ nj[Pj] and ηD be as in Lemma 30.2.1 (in particular,

∑ nj = 0), and consider a collection {γi}
2g
i=1 of closed paths with

support |γi| ⊂ M\|D|, such that their classes {[γi]}
2g
i=1 ⊂ H1(M, Z)

yield a basis.

30.2.2. LEMMA. If

(30.2.3)
ˆ

γi

ηD ∈ Z (∀i),

then (fixing Q ∈ M)

f (P) := exp

7
2π

√
−1
ˆ P

Q
ηD

8

yields a well-defined function f ∈ K(M)∗ with ( f ) = D.

PROOF. We first check independence of path. Let Cj denote cir-

cular paths around the Pj. Given two paths
−→
Q.P and

−→
Q.P ′,

−→
Q.P −−→

Q.P ′ = ∂∆ + ∑ mjCj + ∑ ℓiγi

where ∆ is a (real-2-dimensional) closed region in M\|D|. Now
ˆ

∂∆
ηD =

ˆ

∆
dηD =

ˆ

∆
0 = 0,

∑ mj

ˆ

Cj

ηD = ∑ mjnj ∈ Z

since ResPk ηD = nk
2π

√
−1

, and

∑ ℓi

ˆ

γi

ηD ∈ Z

by assumption (30.2.3). So for some µ ∈ Z

exp
#

2π
√
−1
´

−→
Q.P

ηD

$

exp
#

2π
√
−1
´

−→
Q.P ′ ηD

$ = exp
#

2π
√
−1µ

$
= 1,

and f is well-defined (and holomorphic) on M\|D|.
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For the divisor, let z be a holomorphic coordinate defined in a
neighborhood of Pj (with z(Pj) = 0), and write

η
loc
=

nj

2π
√
−1

dz
z
+ h(z)dz

with h holomorphic. Without loss of generality, we can assume that
Q lies in the neighborhood, with z(Q) =: z0 (fixed) and z(P) =: z
(variable). Locally

f (z) = exp

7
2π

√
−1
ˆ P

Q
ηD

8

= exp
/

2π
√
−1
ˆ z

z0

h(w)dw
0
· exp

/
nj

ˆ z

z0

dw
w

0

= H(z) ·
exp

!
nj log z

"

exp
!
nj log z0

"

where H is holomorphic and nonvanishing in our neighborhood (be-
ing the exponential of something holomorphic). Writing H0(z) =

z
−nj
0 H(z), the above

= H0(z) · znj .

This makes it clear that f is meromorphic at Pj with

νPj( f ) = nj.

Doing this for each j, we conclude that

( f ) = ∑ nj[Pj] = D. □

In the next chapter we will take γ1, . . . , γ2g to yield a symplectic
basis for H1. It turns out that the period vectors π1, . . . , πg associated
to γ1, . . . , γg are actually linearly independent over C,4 and so the
g × g matrix they form is invertible. Applying the inverse matrix to
ω1, . . . , ωg, we may replace them by {ωj} satisfying

ˆ

γi

ωj = δij.

4to be proved in §31.1. Since the vectors are non-real, this doesn’t follow from
independence over R (which we already have from Prop. 25.2.5).
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Given D and ηD as in Lemma 30.2.1, then, we can modify ηD to

QηD := ηD −
g

∑
i=1

/
ˆ

γi

ηD

0
ωi

so that
ˆ

γi

QηD = 0

for i = 1, . . . , g. We will prove that

(30.2.4) AJ(D) = 0 =⇒
there exists a further modification

CηD := QηD + ∑
g
j=1 µjωj

with
´

γi
CηD ∈ Z (i = 1, . . . , 2g),

so as to affirm condition (30.2.3) (for CηD). To attack (30.2.4), we need
the Riemann bilinear relations, our next topic.

The first two problems below are only loosely related to the ma-
terial of his chapter. The second one is rather open ended!

Exercises
(1) In this problem, you will prove a version of Abel’s theorem for

a “singular” cubic (not its normalization). Think of the cubic
C as P1 with 0 identified to ∞ and coordinate z. We consider
Ω1(C) to be spanned by dz

z (even though it isn’t holomorphic)
and H1(C, Z) by the unit circle S1. Divisors must avoid the sin-
gularity, and meromorphic functions f must have f (0) = f (∞) ∕=
0, ∞. (a) What is J(C)? (b) Compute AJ(D) for D = ∑ ni[zi],
∑ ni = 0. (c) Show 0 = AJ(( f )) ∈ J(C). (d) Formulate and prove
the injectivity statement (Abel’s theorem). [Hint: the proof will
use what you did in (c), even though it’s a “converse”, and so
needn’t be long.]

(2) Let M be a Riemann surface and Σ ⊂ M a (nonempty) finite set
of points.
(a) Define divisors on the relative variety (M, Σ) to be formal
sums ∑ ni[pi] where no pi lies in Σ; two of these are rationally
equivalent if their difference is the divisor of f ∈ K(M)∗ which
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is 1 on all points of Σ. Construct an AJ map and Jacobian for
(M, Σ). [Hint: the case M = P1, Σ = {0, ∞} should recover the
results of Exercise (1).]
(b) Next consider the complement M\Σ. We define divisors by
Div(M)/Div(Σ), and rational equivalence by taking divisors of
meromorphic functions on M (and ignoring any poles/zeroes on
Σ, since that information is quotiented out). Construct an AJ
map and Jacobian for M\Σ. [Hint: note that there is no such
thing as degree of a divisor, since the points in Σ effectively have
arbitrary coefficients. Or rather, using these points, you can make
the degree of any divisor zero! This should have some bearing
on your choice of path.]

(3) Prove Lemma 30.2.1. [Hint: write D := ∑r
k=1[pk]− ∑r

k=1[qk], and
pick ωk ∈ I(−[pk]− [qk]) as at the beginning of §30.2.]


