CHAPTER 30

Abel's Theorem, part I

Recall the setup from Chapter 21: *M* is a Riemann surface of genus $g \ge 1$, with closed paths ("1-cycles") γ_i giving a basis $\{[\gamma_i]\}_{i=1}^{2g}$ for $H_1(M, \mathbb{Z})$. We have the *Jacobian* of *M*, which is the complex *g*-torus

$$J(M) := \frac{(\Omega^1(M))^{\vee}}{H_1(M,\mathbb{Z})} \xrightarrow{\cong} \frac{\mathbb{C}^g}{\Lambda_M}.$$

The isomorphism is given by evaluating functionals against a basis $\{\omega_1, \ldots, \omega_g\} \subset \Omega^1(M)$, and Λ_M is called the *period lattice*. The Picard group

$$\operatorname{Pic}^{0}(M) := \frac{\operatorname{Div}^{0}(M)}{(\mathcal{K}(M)^{*})}$$

of degree-0 divisors modulo rational equivalence is the object we want to understand. To this end, we had shown that the *Abel-Jacobi map*

$$AJ: \operatorname{Pic}^{0}(M) \to J(M)$$

 $D \mapsto \int_{\partial^{-1}D}$

is a well-defined homomorphism, where $\partial^{-1}D$ is just shorthand for "some 1-chain Γ with $\partial\Gamma = D$ ". The important content of this is that AJ((f)) = 0 for any $f \in \mathcal{K}(M)^*$.

By *Abel's theorem* we shall always mean the statement that *AJ* is injective, that is

(30.0.1)
$$AJ(D) = 0 \implies D = (f) \text{ for some } f \in \mathcal{K}(M)^*;$$

while the surjectivity will be known as *Jacobi inversion*: i.e., (30.0.2)

given any point in J(M) (= any functional on $\Omega^1(M)$, up to periods), there exists a divisor D inducing that functional via $\int_{\partial^{-1}D} (\cdot)$. These statements will be proved in Chapter 31. Our aim here is just to explain how Abel's theorem relates to Riemann-Roch and develop a couple of technical lemmas to be used in the sequel.

Before starting, let's refine one aspect of the above picture just a bit. Intersecting 1-cycles γ on M — or more precisely, intersecting *transverse* representatives¹ of homology classes $[\gamma]$ — gives a perfect pairing²

$$\langle , \rangle : H_1(M,\mathbb{Z}) \times H_1(M,\mathbb{Z}) \to \mathbb{Z}.$$

There is always a *symplectic basis* of $H_1(M, \mathbb{Z})$, which means a generating subset $\{[\gamma_i]\}_{i=1}^{2g} \subset H_1(M, \mathbb{Z})$ that satisfies

$$egin{aligned} &\langle [\gamma_i], [\gamma_{g+j}]
angle = \delta_{ij} = -\langle [\gamma_{g+j}] \cdot [\gamma_i]
angle \ &\langle [\gamma_i], [\gamma_j]
angle = 0 = \langle [\gamma_{i+g}], [\gamma_{j+g}]
angle \end{aligned}$$

for $1 \le i, j \le g$ (where δ_{ij} is the Kronecker delta). This is the situation *pictured* in §21.1.

We should also remark on what the Picard group is really doing here. For an elliptic curve *E*, in $Pic^{0}(E)$ we have $[p+q] - [p] - [q] + [\mathcal{O}] \equiv 0$, where addition inside the brackets is the group law on *E* and outside the brackets means adding divisors. What this says is: while as divisors (i.e. in the free abelian group on points of *E*) $[p+q] + [\mathcal{O}] \neq [p] + [q]$, working modulo rational equivalence we *do* have $[p+q] + [\mathcal{O}] \equiv [p] + [q]$. So Pic effectively recovers the group law on *E*. Now, curves of higher genus have no group law on points; but by "linearizing" points and working modulo divisors of functions, we get a form of generalization of the group law in genus 1. Intriguingly, a more precise form of Jacobi inversion in the next

¹Any two given homology classes have representative 1-cycles (say, α , β) which intersect transversely. At each intersection point p there is a local holomorphic coordinate z = x + iy, and the tangent vectors \underline{v}_{α} and \underline{v}_{β} to the 1-cycles (which have well-defined directions) can be wedged to produce an element $\underline{v}_{\alpha} \wedge \underline{v}_{\beta} =$ $\xi_p \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} \in \bigwedge^2 T_p M$ ($\xi_p \neq 0$). The intersection is called positively or negatively oriented depending upon the sign of ξ_p , and the intersection number $[\alpha] \cdot [\beta]$ is the number of positive intersection points minus the number of negative ones.

²This means that the (bilinear) pairing is described (with respect to an integral basis of $H_1(M, \mathbb{Z})$) by an integrally invertible, i.e. unimodular, matrix.

chapter will tell us that this may "almost" be seen as a group law on *unordered g-tuples of points on M*.

30.1. From Riemann-Roch to Abel-Jacobi

Let *D* be a divisor on *M*; we have been interested in the dimensions of the vector spaces $\mathfrak{L}(D)$ and $\mathfrak{I}(D)$. In the interval

$$0 \le \deg(D) \le 2g - 2$$

is where anything "of interest" lies: outside this range, either $\ell(D)$ or i(D) is zero. At the extremes, Abel's theorem will tell us:

- (i) $\ell(D)$ when deg(D) = 0; and
- (ii) i(D) when deg(D) = 2g 2.

In case (i), if there is a meromorphic function $f \in \mathcal{K}(M)^*$ with $(f) + D \ge 0$, then

$$deg((f) + D) = deg((f)) + deg(D) = 0 + 0 = 0$$
$$\implies (f) + D = 0 \implies D \stackrel{\text{rat}}{\equiv} 0.$$

In this event, there can be only one such f (up to scale), as

$$(f) = -D = (g) \implies (f/g) = 0 \implies f/g \text{ constant.}$$

Together with similar reasoning in case (ii), and assuming Abel, this argument proves

30.1.1. PROPOSITION. (i) If deg D = 0, then $\ell(D) = 0$ or 1; and $AJ(D) = 0 \iff D \stackrel{rat}{\equiv} 0 \iff \ell(D) = 1.$ (ii) If deg D = 2g - 2, then i(D) = 0 or 1; and $AJ(K-D) = 0 \iff D \stackrel{rat}{\equiv} K \iff \ell(D-K) = 1 \iff i(D) = 1.$

Another point of contact with the last few chapters comes in the context of canonical and hyperelliptic curves. First, fix $q \in M$ and

look at the mapping

$$u_q: M \longrightarrow J(M)$$
$$p \longmapsto AJ([p] - [q]) = \begin{pmatrix} \int_q^p \omega_1 \\ \vdots \\ \int_q^p \omega_g \end{pmatrix} \mod \Lambda_M.$$

Assuming Abel's theorem, we have (for genus ≥ 1)

30.1.2. PROPOSITION. (a) u_q is injective;

- (b) its differential yields the canonical map; and
- (c) if M is hyperelliptic and q is a fixed point of j, then $u_q(M)$ is symmetric with respect to the involution $\underline{u} \mapsto -\underline{u}$ of J(M).

PROOF. (a) Assuming $p_1 \neq p_2$ and $u_q(p_1) = u_2(p_2)$, we have

$$AJ([p_1] - [p_2]) = 0$$

$$\stackrel{\text{Abel}}{\Longrightarrow} \quad \exists f \in \mathcal{K}(M)^* \text{ with } (f) = [p_1] - [p_2]$$

$$\implies \quad f : M \underset{(\cong)}{\longrightarrow} \mathbb{P}^1 \text{ has degree one,}$$

contradicting $g \ge 1$.

(b) Given $\omega \in \Omega^1(M)$, we can consider $\omega(p) \in T_p^*M$. By the fundamental theorem of calculus, the differential

$$du_q(p): T_pM \longrightarrow T_{u_q(p)}J(M) \cong \mathbb{C}^g$$

is given by $(\omega_1(p), \ldots, \omega_g(p))$. (That is, if $\omega_i \stackrel{\text{loc}}{=} f_i(z)dz$, with z(p) = 0, then $du_q(p)$ sends $\frac{\partial}{\partial z}|_p \mapsto (f_1(0), \ldots, f_g(0)) \in \mathbb{C}^g$.) This associates a line in \mathbb{C}^g to each $p \in M$; projectivizing clearly recovers $\varphi_K : M \to \mathbb{P}^{g-1}$ from §28.3.

(c) Using j((x, y)) = (x, -y), we have

$$u_q(j(p)) = \begin{pmatrix} \int_{q=j(q)}^{j(p)} \frac{dx}{y} \\ \vdots \\ \int_{j(q)}^{j(p)} \frac{x^{g-1}dx}{y} \end{pmatrix} = \begin{pmatrix} \int_q^p j^* \frac{dx}{y} \\ \vdots \\ \int_q^p j^* \frac{x^{g-1}dx}{y} \end{pmatrix} = \begin{pmatrix} -\int_q^p \frac{dx}{y} \\ \vdots \\ -\int_q^p \frac{x^{g-1}dx}{y} \end{pmatrix}$$
$$= -u_q(p).$$

In fact, in the hyperelliptic case it is clear from (c) that the fixed points of I map to 2-torsion points of I(M).

30.2. Differential forms of the third kind

There is a classical (and passé) terminology for meromorphic differential forms on a Riemann surface: "first kind" refers to holomorphic forms; "second kind" to meromorphic forms with trivial residues (and hence no *simple* poles); and "third kind" to everything else. In this section we'll pursue a method for constructing functions with a given divisor (if possible). The title refers to the essential use we shall make of meromorphic forms with prescribed (nonzero) residues.

Given $p, q \in M$

$$i(-[p]-[q]) = g - (-2) - 1 + \underbrace{\ell(-[p]-[q])}_{0} = g + 1 \ (>g),$$

so there exists $\omega \in \mathfrak{I}(-[p] - [q]) \setminus \Omega^1(M)$. By the residue theorem,

$$0 = \underbrace{\operatorname{Res}_p(\omega) + \operatorname{Res}_q(\omega)}_{\text{both nonzero since poles simple}}$$

and we can normalize ω so that

$$\operatorname{Res}_p \omega = rac{1}{2\pi\sqrt{-1}}$$
, $\operatorname{Res}_q \omega = rac{-1}{2\pi\sqrt{-1}}$.

For any meromorphic form η , we write $(\eta) = (\eta)_0 - (\eta)_\infty$ where $(\eta)_0, (\eta)_\infty \ge 0$ are the zero- and polar-divisors.

30.2.1. LEMMA. Given $D \in \text{Div}^0(M)$, there exists³

$$\eta_D \in \Im\left(-\sum_{p \in |D|} [p]\right)$$

such that

$$(\eta_D)_{\infty} = \sum_{p \in |D|} [p] \quad and \quad \operatorname{Res}_p \eta_D = \frac{\operatorname{ord}_p(D)}{2\pi\sqrt{-1}}.$$

³As before, |D| denotes the *support* of the divisor *D*, i.e. the finite subset of *M* comprising points that appear in *D* with nonzero multiplicity. Similarly, the support $|\gamma|$ of a 1-cycle γ means that we just consider it as a subset of *M*.

PROOF. See Exercise (3).

Next let $D = \sum n_j [P_j]$ and η_D be as in Lemma 30.2.1 (in particular, $\sum n_j = 0$), and consider a collection $\{\gamma_i\}_{i=1}^{2g}$ of closed paths with support $|\gamma_i| \subset M \setminus |D|$, such that their classes $\{[\gamma_i]\}_{i=1}^{2g} \subset H_1(M, \mathbb{Z})$ yield a basis.

30.2.2. LEMMA. If

(30.2.3)
$$\int_{\gamma_i} \eta_D \in \mathbb{Z} \ (\forall i),$$

then (fixing $Q \in M$ *)*

$$f(P) := \exp\left(2\pi\sqrt{-1}\int_Q^P \eta_D\right)$$

yields a well-defined function $f \in \mathcal{K}(M)^*$ with (f) = D.

PROOF. We first check independence of path. Let C_j denote circular paths around the P_j . Given two paths $\overrightarrow{Q.P}$ and $\overrightarrow{Q.P}'$,

$$\overrightarrow{Q.P} - \overrightarrow{Q.P}' = \partial \Delta + \sum m_j C_j + \sum \ell_i \gamma_i$$

where Δ is a (real-2-dimensional) closed region in $M \setminus |D|$. Now

$$\int_{\partial \Delta} \eta_D = \int_{\Delta} d\eta_D = \int_{\Delta} 0 = 0,$$
$$\sum m_j \int_{C_j} \eta_D = \sum m_j n_j \in \mathbb{Z}$$

since $Res_{P_k}\eta_D = \frac{n_k}{2\pi\sqrt{-1}}$, and

$$\sum \ell_i \int_{\gamma_i} \eta_D \in \mathbb{Z}$$

by assumption (30.2.3). So for some $\mu \in \mathbb{Z}$

$$\frac{\exp\left(2\pi\sqrt{-1}\int_{\overrightarrow{Q.P}}\eta_D\right)}{\exp\left(2\pi\sqrt{-1}\int_{\overrightarrow{Q.P}}\eta_D\right)} = \exp\left(2\pi\sqrt{-1}\mu\right) = 1,$$

and *f* is well-defined (and holomorphic) on $M \setminus |D|$.

For the divisor, let *z* be a holomorphic coordinate defined in a neighborhood of P_i (with $z(P_i) = 0$), and write

$$\eta \stackrel{\text{loc}}{=} \frac{n_j}{2\pi\sqrt{-1}} \frac{dz}{z} + h(z)dz$$

with *h* holomorphic. Without loss of generality, we can assume that *Q* lies in the neighborhood, with $z(Q) =: z_0$ (fixed) and z(P) =: z (variable). Locally

$$f(z) = \exp\left(2\pi\sqrt{-1}\int_{Q}^{P}\eta_{D}\right)$$
$$= \exp\left(2\pi\sqrt{-1}\int_{z_{0}}^{z}h(w)dw\right) \cdot \exp\left(n_{j}\int_{z_{0}}^{z}\frac{dw}{w}\right)$$
$$= H(z) \cdot \frac{\exp\left(n_{j}\log z\right)}{\exp\left(n_{j}\log z_{0}\right)}$$

where *H* is holomorphic and nonvanishing in our neighborhood (being the exponential of something holomorphic). Writing $H_0(z) = z_0^{-n_j} H(z)$, the above

$$=H_0(z)\cdot z^{n_j}.$$

This makes it clear that f is meromorphic at P_i with

$$\nu_{P_i}(f) = n_j.$$

Doing this for each *j*, we conclude that

$$(f) = \sum n_j [P_j] = D. \qquad \Box$$

In the next chapter we will take $\gamma_1, \ldots, \gamma_{2g}$ to yield a symplectic basis for H_1 . It turns out that the period vectors π_1, \ldots, π_g associated to $\gamma_1, \ldots, \gamma_g$ are actually linearly independent over \mathbb{C} ,⁴ and so the $g \times g$ matrix they form is invertible. Applying the inverse matrix to $\omega_1, \ldots, \omega_g$, we may replace them by $\{\omega_j\}$ satisfying

$$\int_{\gamma_i} \omega_j = \delta_{ij}$$

⁴to be proved in §31.1. Since the vectors are non-real, this doesn't follow from independence over \mathbb{R} (which we already have from Prop. 25.2.5).

Given *D* and η_D as in Lemma 30.2.1, then, we can modify η_D to

$$\widetilde{\eta_D} := \eta_D - \sum_{i=1}^g \left(\int_{\gamma_i} \eta_D \right) \omega_i$$

so that

$$\int_{\gamma_i} \widetilde{\eta_D} = 0$$

for $i = 1, \ldots, g$. We will prove that

there exists a further modification

(30.2.4)
$$AJ(D) = 0 \implies \widehat{\eta_D} := \widetilde{\eta_D} + \sum_{j=1}^g \mu_j \omega_j$$

with $\int_{\gamma_i} \widehat{\eta_D} \in \mathbb{Z}$ $(i = 1, \dots, 2g)_j$

so as to affirm condition (30.2.3) (for $\hat{\eta}_D$). To attack (30.2.4), we need the *Riemann bilinear relations*, our next topic.

The first two problems below are only loosely related to the material of his chapter. The second one is rather open ended!

Exercises

- (1) In this problem, you will prove a version of Abel's theorem for a "singular" cubic (not its normalization). Think of the cubic *C* as ℙ¹ with 0 identified to ∞ and coordinate *z*. We consider Ω¹(*C*) to be spanned by dz/z (even though it isn't holomorphic) and H₁(*C*, ℤ) by the unit circle S¹. Divisors must avoid the singularity, and meromorphic functions *f* must have f(0) = f(∞) ≠ 0,∞. (a) What is J(*C*)? (b) Compute AJ(*D*) for *D* = ∑n_i[z_i], ∑n_i = 0. (c) Show 0 = AJ((f)) ∈ J(*C*). (d) Formulate and prove the injectivity statement (Abel's theorem). [Hint: the proof will use what you did in (c), even though it's a "converse", and so needn't be long.]
- (2) Let *M* be a Riemann surface and $\Sigma \subset M$ a (nonempty) finite set of points.

(a) Define divisors on the relative variety (M, Σ) to be formal sums $\sum n_i[p_i]$ where no p_i lies in Σ ; two of these are rationally equivalent if their difference is the divisor of $f \in \mathcal{K}(M)^*$ which

EXERCISES

is 1 on all points of Σ . Construct an *AJ* map and Jacobian for (M, Σ) . [Hint: the case $M = \mathbb{P}^1$, $\Sigma = \{0, \infty\}$ should recover the results of Exercise (1).]

(b) Next consider the complement $M \setminus \Sigma$. We define divisors by $\text{Div}(M)/\text{Div}(\Sigma)$, and rational equivalence by taking divisors of meromorphic functions on M (and ignoring any poles/zeroes on Σ , since that information is quotiented out). Construct an AJ map and Jacobian for $M \setminus \Sigma$. [Hint: note that there is no such thing as degree of a divisor, since the points in Σ effectively have arbitrary coefficients. Or rather, using these points, you can make the degree of any divisor zero! This should have some bearing on your choice of path.]

(3) Prove Lemma 30.2.1. [Hint: write $D := \sum_{k=1}^{r} [p_k] - \sum_{k=1}^{r} [q_k]$, and pick $\omega_k \in \mathfrak{I}(-[p_k] - [q_k])$ as at the beginning of §30.2.]