
CHAPTER 31

Abel’s Theorem, part II

As mentioned at the beginning of the previous chapter, on any
Riemann surface M, we get a perfect pairing on homology

(31.0.1) 〈 , 〉 : H1(M, Z)× H1(M, Z) → Z

by intersecting 1-cycles. With respect to a symplectic basis {γj}
2g
j=1 as

described there, this pairing has (2g × 2g) matrix

Q =

7
0 Ig

−Ig 0

8
.

We can use (31.0.1) to produce an isomorphism of dual spaces
(31.0.2)

H1(M, C) = H1(M, Z)⊗ C
∼=−→ Hom(H1(M, Z), C) = H1(M, C)

which is a special case of Poincaré duality.
Recalling the isomorphisms

Ω1(M)⊕ Ω1(M)
∼=−→ H1

dR(M, C)
∼=−→ H1(M, C),

there is also a pairing (the “cup-product”)

H1(M, C)× H1(M, C) → C

induced on the level of 1-forms by

(ω, η) +−→
ˆ

M
ω ∧ η.

Notice that since two holomorphic forms wedge to zero, this pairing
restricts to zero on Ω1(M)× Ω1(M) (and Ω1(M)× Ω1(M)).

Yet another pairing (the “cap-product”)

H1(M, Z)× H1(M, C) → C

367



368 31. ABEL’S THEOREM, PART II

is induced by

(γ, ω) +→
ˆ

γ
ω.

The restriction of this pairing to H1(M, Z)× Ω1(M) is captured by
the period matrix of Chapter 21. An important fact is that, under
(31.0.2), both of these integration-induced products are nothing but
complex-linear extensions of (31.0.1).

Assuming this compatibility, we can quickly derive the Riemann
bilinear relations as follows. If for any closed 1-form ϕ ∈ Ω1(M) ⊕
Ω1(M), we write

πj(ϕ) :=
ˆ

γj

ϕ,

then (31.0.2) identifies

(31.0.3) [ϕ] =
g

∑
j=1

!
πj(ϕ)[γj+g]− πj+g(ϕ)[γj]

"

in H1(M, C), i.e. as functionals on homology. One has for ω, ϕ ∈
Ω1(M)

(31.0.4) 0 =

ˆ

M
ω ∧ ϕ = −

g

∑
j=1

!
πj(ϕ)πj+g(ω)− πj+g(ϕ)πj(ω)

"

by writing
´

M ω ∧ ϕ = 〈[ω], [ϕ]〉 and expanding both classes as in
(31.0.3). Similar reasoning together with the local computation

idz ∧ dz̄ = i(dx + idy) ∧ (dx − idy) = i(−2idx ∧ dy) = 2dx ∧ dy,

leads to
(31.0.5)

0 < i
ˆ

M
ω ∧ ω̄ = −i

g

∑
i=1

#
πj(ω)πj+g(ω)− πj+g(ω)πj(ω)

$
.

This is all meant as motivation, though it can be made completely
rigorous. We’ll start the first section with a more concrete, classical
proof of (31.0.4)-(31.0.5), without the compatibility assumptions on
the three bilinear pairings.
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31.1. Derivation of the Riemann Bilinear Relations

We start by cutting M open to get the “fundamental domain”, a
simply-connected closed region F

q

q q

q

q

q

M

fundamental

domain
γ

γ

γ

γ
g+j

j

j

g+j

r’

r

p’

p

po

with boundary ∂F. (Only a piece of it is shown in the picture.) Let p0

in the interior of F be fixed. Given ω ∈ Ω1(M),

u(p) :=
ˆ p

p0

ω

then yields a well-defined (single-valued) holomorphic1 function on
F. If we take a second holomorphic form ϕ ∈ Ω1(M), then

d(uϕ) = ω ∧ ϕ = 0.

That is, uϕ is a closed holomorphic form on F with the consequence
that

0 =

ˆ

F
d(uϕ) =

ˆ

∂F
uϕ

by Stokes’s theorem. Now, the picture above tells us that ∂F is the
composition of paths

γ−1
2g γ−1

g γ2gγg · · · · · γ−1
g+2γ−1

2 γg+2γ2γ−1
g+1γ−1

1 γg+1γ1,

written right to left (with inverse meaning the reverse direction). So
the last integral becomes

=
g

∑
j=1

{
ˆ

γj

(u(p)− u(p′))
+ ,- .
´ q

p′ ω−
´

γg+j
ω+
´ p

q ω

ϕ +

ˆ

γj+g

(u(r)− u(r′))+ ,- .
´ q

r′ ω+
´

γj
ω+
´ r

q ω

ϕ }

1To be holomorphic on a closed set means that the function extends to a holomor-
phic function on a slightly larger open set (which, in this case, would live on the
universal cover of M).
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and, noting that
´ q

p′ ω =
´ q

p ω = −
´ p

q ω, this

=
g

∑
j=1

7
−
ˆ

γg+j

ω

ˆ

γj

ϕ +

ˆ

γg+j

ϕ

ˆ

γj

ω

8
.

This calculation of
´

∂F uϕ is evidently also valid with ϕ replaced by a
more general (antiholomorphic, meromorphic) 1-form. In particular,
replacing it by iω̄ yields

0 < i
ˆ

F
ω ∧ ω̄+ ,- .
d(uω̄)

=

ˆ

∂F
u(iω̄) = i

g

∑
j=1

7
−
ˆ

γj+g

ω

ˆ

γj

ω̄ +

ˆ

γg+j

ω̄

ˆ

γj

ω

8
.

So we have recovered (31.0.4)-(31.0.5).
To reformulate this in matrix terms for any symplectic basis {γj}

2g
j=1

of H1(M, Z) and any basis {ωi}
g
i=1 of Ω1(M), notice that the (k, ℓ)th

entry of2

Π · Q · tΠ =

%

&'
↑ ↑

π1 · · · π2g

↓ ↓

(

)*

7
0 Ig

−Ig 0

8%

&'
← π1 →

...
← π2g →

(

)*

=

%

&'
↑ ↑ ↑ ↑

−πg+1 · · · −π2g π1 · · · πg

↓ ↓ ↓ ↓

(

)*

%

&'
← π1 →

...
← π2g →

(

)*

is
g

∑
j=1

!
πj(ωk)πg+j(ωℓ)− πj(ωℓ)πg+j(ωk)

"
,

which is zero by (31.0.4); so

(31.1.1) Π · Q · tΠ = 0.

Similarly,

(31.1.2)
√
−1Π · Q · tΠ > 0

in the sense that tx(
√
−1Π · Q · tΠ)x̄ ∈ R>0 for any x ∈ Cg. In

particular, the diagonal entries of (31.1.2) are positive real.

2Recall from Chapter 21 that πj is the complex g-vector with ith entry πj(ωi)
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31.1.3. REMARK. Consider any two symplectic integral bases Γ =

{γj} and Γ = {γ′
j} (thought of as row-vectors), so that

Γ′ = ΓA

for some A ∈ SL2g(Z). Applying the basis {ωi} (viewed as a column-
vector of 1-forms) on the left yields

Π′ = ΠA.

Furthermore, since both bases are symplectic we have Q = tΓ · Γ and

Q = tΓ′ · Γ′ = t AtΓΓA = t AQA;

that is, A belongs to the symplectic group Sp2g(Z). It is for this rea-
son that (31.1.1)-(31.1.2) are compatible with change of symplectic
basis: e.g., assuming (31.1.1), we have

Π′QtΠ′ = ΠAQt AtΠ = ΠQtΠ = 0.

Now thinking of the g × 2g period matrix as two g × g blocks,
viz.

(31.1.4) Π =
#
A B

$
,

we have

ΠQtΠ =
#
A B

$7
Ig

−Ig

87
tA
tB

8
= A · tB − B · tA

and
ΠQtΠ = A · tB − B · tA.

In these terms, (31.1.1) reads

(31.1.5) A · tB = B · tA

while (31.1.2) becomes

(31.1.6)
√
−1tv(AtB − BtA)v̄ > 0 (∀v ∈ Cg).

If tA has nonzero kernel, then there exists v ∈ Cg satisfying tAv = 0,
hence tvA = 0 and tAv̄ = 0, contradicting (31.1.6). It follows that
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A is invertible, and so we have proved the statement on C-linear
independence asserted at the end of §30.2.

Applying A−1 to the left of Π amounts to a change of the basis
{ωi} for Ω1(M), viz.3

A−1Π = A−1

%

&'
ω1
...

ωg

(

)*
#

γ1 · · · γ2g

$
=

%

&&'

ω′
1

...
ω′

g

(

))*
#

γ1 · · · γ2g

$
.

If we apply it to (31.1.4), then we get

Π′ := A−1Π =
#

Ig A−1B
$

.

We can therefore always assume that {ωi} is chosen so that

Π =
#

Ig Z
$

,

again as claimed in §30.2. The bilinear relations (31.1.5)-(31.1.6) sim-
plify to

(31.1.7)

K
Z = tZ√

−1(Z − Z) > 0
,

which in particular tell us that the imaginary part Im(Z) is a positive-
definite, real symmetric matrix.

31.2. Proof of Abel’s Theorem

With the holomorphic basis as normalized above, we can now
quickly establish (30.2.4) and hence (30.0.1). Write D = ∑ ni[Pi] (with
∑ ni = 0) and let ϕ := QηD be as in §30.2, so that

(31.2.1) ResPi(ϕ) =
ni

2π
√
−1

(∀i)

and
ˆ

γj

ϕ = 0 (j = 1, . . . , g).

3Here the “product” of ωi and γj is just the integral
´

γj
ωi.
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For each k = 1, . . . , g set

uk(p) :=
ˆ p

p0

ωk

on F, and let Γ be a 1-chain (sum of paths) on F with ∂Γ = D. Then
noting D = ∑i ni([Pi]− [p0]), we have

ˆ

Γ
ωk = ∑

i
niuk(Pi) = 2π

√
−1 ∑

p∈|D|
Resp(uk ϕ)

which by the Residue Theorem

=

ˆ

∂F
uk ϕ

§31.1
= ∑

j
(πj(ωk)+ ,- .

δjk

πg+j(ϕ)− πg+j(ωk)πj(ϕ)
+ ,- .

0

) = πg+k(ϕ).

If AJ(D) = 0 then there are integers mj (j = 1, . . . , 2g) such that
for every k

ˆ

Γ
ωk =

2g

∑
j=1

mj

ˆ

γj

ωk.

Using
´

γj
ωk = δjk and Z = tZ (from (31.1.7)), this

= mk +
g

∑
j=1

mj+gπj+g(ωk) = mk +
g

∑
j=1

mj+gπk+g(ωj).

Now

ϕ̂ := ϕ −
g

∑
j=1

mj+gωj

is still an element of I(−∑p∈|D|[p]) satisfying (31.2.1). Moreover, for
k ∈ {1, . . . , g}

πk+g(ϕ̂) = πk+g(ϕ)−
g

∑
j=1

mj+gπk+g(ωj)

=

ˆ

Γ
ωk −

g

∑
j=1

mj+gπk+g(ωj) = mk ∈ Z
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and

πk(ϕ̂) = πk(ϕ)
+ ,- .

0

−
g

∑
j=1

mj+gπk(ωj)+ ,- .
δkj

= −mk+g ∈ Z.

By Lemma 30.2.2, exp
!
2π

√
−1
´

ϕ̂
"

now gives a meromorphic func-
tion with ( f ) = D.

31.3. Proof of Jacobi Inversion

To show that AJ is surjective, we will study the image of a certain
class of (degree zero) divisor on M, namely those of the form

[p1] + · · ·+ [pd]− d[q]

given some fixed point q ∈ M and natural number d. Such divi-
sors are obviously in 1-to-1 correspondence with unordered d-tuples
of points on M, in other words with elements of the dth symmetric
power

SymdM :=

d copies- .+ ,
M × · · ·× M

(p1, . . . , pd) ∼ (pσ(1), . . . , pσ(d))
∀ σ∈Sd

.

(These elements are written either p1 + · · ·+ pd or {p1, . . . , pd}.) In
order to be able to use complex analytic techniques we need to put
the structure of a d-dimensional complex manifold on this.4

To get a feel for how this works, take d = 2 and consider C in-
stead of a (compact) Riemann surface. The symmetric square Sym2C

is the quotient of C × C by the involution (z1, z2) +→ (z2, z1). What
causes difficulty is the locus consisting of its fixed points, i.e. the

4Had we started with M itself of dimension > 1, its symmetric powers would be
singular complex analytic spaces, hence not manifolds. So what happens next is
special for dim(M) = 1.
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diagonal line. Take two small open sets in Sym2M, one which inter-
sects the diagonal and one which does not:

z

z
2

1

β
U

U
α

Clearly (z1, z2) give local holomorphic coordinates on Uβ. On Uα,
they are not well-defined, but their elementary symmetric polyno-
mials σ1(z1, z2) = z1 + z2 and σ2(z1, z2) = z1z2 are. Moreover, these
functions generate all polynomials in z1, z2 which are invariant un-
der the involution and hence well-defined on Uα ⊂ Sym2C. Taking
(w1, w2) := (z1 + z2, z1z2) as the holomorphic coordinates there,5 the
transition function Φαβ is then just (σ1, σ2). To see that this is invert-
ible on Uαβ, notice that in Uα the diagonal is defined by w2

1 = 4w2

(since z1 = z2 ⇐⇒ (z1 + z2)
2 = 4z1z2). Since Uαβ avoids this locus

(and is simply connected),
9

w2
1 − 4w2 is well defined there and we

can define Φβα by 1
3

4
z1 =

w1+
√

w2
1−4w2

2

z2 =
w2−

√
w2

1−4w2
2

.

More generally, in a neighborhood of

{q1, . . . , q1+ ,- .
k1 times

; . . . ; qℓ, . . . , qℓ+ ,- .
kℓ times

} ∈ SymdM

5We could in fact take these as global coordinates, but this situation won’t gener-
alize to M.
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(where ∑ℓ
j=1 k j = d), the local coordinate system is given in terms of

holomorphic coordinates zj on M near each qj, by

{p1, . . . , pk1+ ,- .
all near q1

; . . . ; pd−kℓ+1, . . . , pd+ ,- .
all near qℓ

} +−→

!
σ1

!
z1(p1), . . . , z1(pk1)

"
, . . . , σk1

!
z1(p1), . . . , z1(pk1)

"
; . . . ;

σ1
!
zℓ(pd−kℓ+1), . . . , zℓ(pd)

"
, . . . , σkℓ

!
zℓ(pd−kℓ+1), . . . , zℓ(pd)

""
.

Inelegant, but it gets the job done.
Now let D be any divisor of degree d on M, and consider the

mapping
αD : P(L(D)) → SymdM

which sends (for f ∈ L(D))

[ f ] +→ ( f ) + D.

Here ( f ) + D ≥ 0 by definition, and deg(( f ) + D) = deg D = d; so
( f ) + D is indeed of the form [p1] + · · · + [pd]. The map sends the
projective equivalence class [ f ], i.e. “ f up to a constant multiple”, to
{p1, . . . , pd}.

31.3.1. LEMMA. αD is (a) injective and (b) holomorphic.

31.3.2. DEF INITION. The linear system6 |D| consists of all effective
divisors on M rationally equivalent to D. The Lemma evidently re-
alizes |D| = image(αD) as a subvariety of SymdM isomorphic to
Pℓ(D)−1.

PROOF OF LEMMA. (a) ( f ) + D = (g) + D =⇒ ( f ) = (g) =⇒
( f /g) = 0 =⇒ f /g constant =⇒ [ f ] = [g].

(b) To show αD holomorphic in a neighborhood of [ f0], augment
f0 to a basis { f0, f1, . . . , fℓ(D)} ⊂ L(D) and write fµ := f0 +∑

ℓ(D)
j=1 µj f j

so that {µj}
ℓ(D)
j=1 are the local holomorphic coordinates (on some small

U ⊂ L(D)). Let p ∈ |D| ∪ |( f0)|, with open neighborhood Np ⊂ M
and local coordinate z (ordp(z) = 1). Set k := ordp( f0) + ordp(D),

6The notation |D| is unfortunately standard for both the linear system and the
support of D, two completely different concepts!
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and W f0,p := SymkNp with coordinates σ1(z1, . . . , zk), . . . , σk(z1, . . . , zk).

We must show that the composition

U −→ O(Np) −→ W f0,p ↩→ Ck

µ +→ fµzordpD +→
!

fµzordp D
"###

Np

%
p1(µ) + · · ·+ pk(µ)

+→

%

'
σ1

!
z(p1(µ)), . . . , z(pk(µ))

"

...

σk

!
z(p1(µ)), . . . , z(pk(µ))

"

(

*

is holomorphic, which in turn boils down to the statement that each
σℓ is holomorphic in each µj. For k = 1, this is the holomorphic im-
plicit function theorem; for k > 1, it is this together with Rouché and
the Riemann extension theorem in a manner familiar from previous
chapters. □

31.3.3. DEF INITION. An effective degree d divisor D (viewed as
an element of SymdM) is called general ⇐⇒ D = [p1] + · · · + [pd]

with the {pj} distinct points of M.

Now look at the “Abel-Jacobi” mapping

ud : SymdM −→ J(M)

[p1] + · · ·+ [pd] +−→ AJ

7
d

∑
j=1

[pj] − d[q]

8
,

where q ∈ M is fixed. This is shown to be holomorphic by using
the fundamental theorem of calculus at general D, then applying the
Osgood and Riemann extension theorems. (Boundedness is clear by
taking a local lifting of the image of ud to Cg.)

The next result does not require D to be general.

31.3.4. LEMMA. The fiber of ud over ud(D) is |D| (∼= Pℓ(D)−1).

PROOF. (For simplicity write u for ud.)

u−1(u(D)) ⊂ |D|: u(E) = u(D) =⇒ AJ(E− D) = 0 Abel
=⇒ E− D

is the divisor of some f ∈ K(M)∗ =⇒ ( f ) + D = E ≥ 0 (since
E ∈ SymdM ) =⇒ f ∈ L(D) =⇒ E = αD( f ) ∈ image(αD) = |D|.
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u−1(u(D)) ⊃ |D|: Given E ∈ |D|, there exists f ∈ L(D) such that

E = ( f ) + D =⇒ E − D = ( f )
rat≡ 0 =⇒ 0 = AJ(E − D) =⇒

u(E) = u(D) =⇒ E ∈ u−1(u(D)). □

If D = [p1] + · · ·+ [pd] is general, then writing zj for local coor-
dinates about each pj,

(dud)D : TD

#
SymdM

$
−→ Tu(D)(J(M))

is computed by the matrix
%

&&'

∂
∂z1

∑d
i=1
´ zi

q ω1 · · · ∂
∂z1

∑d
i=1
´ zi

q ωg
... . . . ...

∂
∂zd

∑d
i=1
´ zi

q ω1 · · · ∂
∂zd

∑d
i=1
´ zi

q ωg

(

))*

????????
{p1,...,pd}

.

If we write locally (about each pj) ωi
loc
= fi(zj)dzj, this

=

%

&'
f1(p1) · · · fg(p1)

... . . . ...
f1(pd) · · · fg(pd)

(

)* =

%

&&'

← %ϕK(p1) →
...

← %ϕK(pd) →

(

))* ,

where ϕK is the canonical map and %ϕK(pj) ∈ Cg is a “lift” of ϕK(pj) ∈
Pg−1. (For d = 1 this is just Proposition 30.1.2(b).) From this we see
that

rank
#
(dud)D

$
= dim (span(ϕK(p1), . . . , ϕK(pd))) + 1,

where “span” means the projective linear span in Pg−1. Taking d =

g, we now have the following claim:

31.3.5. LEMMA. rank ((dug)D) = g for a generic7 choice of D =

[p1] + · · · + [pg] ∈ SymgM, i.e. for D in some Zariski open subset of
SymdM.

7“General” may not be quite enough — D may have to avoid a larger number of
subvarieties of Symg M then just the ones where two or more pj’s coincide.
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PROOF. Pick p1, . . . , pg distinct with span
!

ϕK(p1), . . . , ϕK(pg)
"
=

all of Pg−1. This is possible since the canonical map is always non-
degenerate by Theorem 28.3.3(a). Consequently rank ((dug)D) = g,
and this holds more generally for D in an algebraic open set. This
is because its failure is equivalent to det(dug) = 0, which is an alge-
braic condition which will hold on some codimension-one subvari-
ety. □

31.3.6. THEOREM. [JACOBI INVERSION] ug is surjective and gener-
ically injective.

PROOF. By Lemma 31.3.5, dug is generically an isomorphism of
tangent spaces. So ug takes an open ball about a general point D ∈
SymdM to an open ball. But ug is continuous and SymgM compact,
so image(ug) is both a closed analytic subvariety of J(M) and con-
tains an open ball, and is therefore all of J(M) (which is connected).

Since at a generic D, dug is (in particular) injective, we see that
any such D is an isolated point of (ug)−1{ug(D)}. But the latter is a
projective space by Lemma 31.3.4, and so the only way D is isolated
is if (ug)−1{ug(D)} is isomorphic to P0, i.e. is just D itself. □

Finally, to address (30.0.2) head-on, surjectivity of AJ follows from
the diagram

(31.3.7) Div0(M)
AJ

!! J(M)

SymgM.
' (D 1→D−g[q]

..▲▲▲▲▲▲▲▲▲▲▲
ug
$$$$

So we conclude that AJ induces an isomorphism Pic0(M) ∼= J(M)

of abelian groups, giving a sort of group law on (linear systems of)
g-tuples of points of M.

31.4. A final remark on moduli

For any Riemann surface M (of genus ≥ 1) with given symplec-
tic basis of H1(M, Z), we know that there is a unique choice of basis
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for Ω1(M) making the period matrix Π of the form
#

Ig Z
$

. More-
over, we know by (31.1.7) that Z is symmetric with positive definite
imaginary part, i.e. belongs to the gth Siegel upper half space

Hg := {Z ∈ Mg(C) | Z = tZ, Im(Z) > 0}.

Note that H1 is just H, the familiar upper half plane.
The Jacobian J(M) is the quotient of Cg by the lattice ΛM given by

integral linear combinations of the columns of Π. More generally, let
Z be any g × g complex matrix such that

#
Ig Z

$
has R-linearly in-

dependent column vectors. Writing ΛZ for their Z-span, we define a
complex torus by AZ := Cg/ΛZ; any complex g-torus is isomorphic
to one of this form. A major result is the

31.4.1. THEOREM. [RIEMANN EMBEDDING THEOREM] AZ is an
abelian variety (i.e., has a holomorphic embedding in projective space) if
and only if ±Z belongs to Hg.

(Of course, any τ R-linearly independent from 1 is in the upper
or lower half plane, so every complex 1-torus is algebraic; already
for g = 2 this is false!) You can find (effectively) two proofs in [Grif-
fiths and Harris], one using generalized theta functions and the other
using Kodaira’s embedding theorem.

For us, the implications of this theorem are:

(a) Jacobians of Riemann surfaces of genus g are abelian varieties
of dimension g; and

(b) abelian varieties of dimension g have g(g+1)
2 moduli.

Since Riemann surfaces of genus g ≥ 2 have 3g − 3 moduli, the fol-
lowing is believable:

31.4.2. PROPOSITION. For g < 4, all abelian g-folds are Jacobians (or
products of Jacobians); for g ≥ 4, “most” of them are not.

For g ≥ 4, then, we have the problem of characterizing the “Ja-
cobian locus” in the moduli space Hg/Sp2g(Z), which is the (very
difficult) Schottky problem. There are recent results describing this lo-
cus in terms of the vanishing of theta functions.
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Exercises
(1) What is the smallest value of d for which it is clear that ud has all

fibers of the same dimension (and what are they)?
(2) Let D, E ≥ 0 be effective divisors. Show that dim |D|+dim |E| ≤

dim |D + E|. [Hint: show that addition of divisors gives a map
|D|× |E| → |D + E| with finite fibers.]

(3) A divisor D on M is special if i(D), ℓ(D) > 0. (a) Show that for D
special, ℓ(D) ≤ 1

2 deg(D) + 1. [Hint: First apply (2) to D and K −
D to bound ℓ(D) + i(D), then use Riemann-Roch.] (b) For D ∈
SymgM, show that D is special ⇐⇒ the fiber u−1

g (ug(D))(=

|D|) is not just the point D. (c) Conclude that the “special fibers”
of ug have dimension in [1, g

2 ].
(4) Let M be hyperelliptic of genus g. Use Exercise (3) to completely

describe the fibers of ug (a) for g = 2 and (b) for g = 3. [Hint for
(b): you will need to show that there is no map f : M → P1 of
degree 3. If there was, and D := ( f )∞ = [p] + [q] + [r], use the
degree-2 map x : M → P1 to construct g with (g)∞ = x−1(x(p)).
What functions are in L(D′)? Apply Exercise (3)(a) to D′ := D +

(g)∞ to reach a contradiction.]
(5) The automorphism group G of a Riemann surface M is infinite

if g ≤ 1 (why?). By a theorem of Hurwitz,8 it is finite (of order
≤ 84(g− 1)) if g > 1. Here you will just prove an earlier theorem
of Schwarz that (for g > 1) there are no continuous families of
automorphisms: suppose otherwise, and let σt be a family with
σ0 = idM. For t small, σt preserves the homology classes of the
{γi} (but σt ∕= σt′ for t ∕= t′). Show that σ∗

t ωj = ωj for 1 ≤ j ≤ g,
consider f := ω1

ω2
, and reach a contradiction.

8If you want a really hard computation, assume |G| < ∞ and apply the Riemann-
Hurwitz formula to the quotient X ↠ X/G to get this bound. Another bound is
given by 2W!, where W is the number of Weierstrass points of M (i.e. those points
p for which g[p] is special).


