CHAPTER 31

Abel’s Theorem, part I1

As mentioned at the beginning of the previous chapter, on any
Riemann surface M, we get a perfect pairing on homology

(31.0.1) (,): HH(M,Z) x H{(M,Z) — Z

by intersecting 1-cycles. With respect to a symplectic basis {'y]}]zi 1 as
described there, this pairing has (2g x 2¢) matrix

_ 0 ]Ig
Q_<_1[g 0>'

We can use (31.0.1) to produce an isomorphism of dual spaces
(31.0.2)
H;(M,C) = Hi{(M,Z) ® C — Hom(H;(M,Z),C) = H (M, C)

which is a special case of Poincaré duality.
Recalling the isomorphisms

Q' (M) & QI (M) — Hlx(M,C) — H'(M,C),
there is also a pairing (the “cup-product”)
H'(M,C) x H'(M,C) — C

induced on the level of 1-forms by

(w,n) r—>/Mw/\17.

Notice that since two holomorphic forms wedge to zero, this pairing
restricts to zero on Q' (M) x QY (M) (and Q1 (M) x Q1 (M)).
Yet another pairing (the “cap-product”)

Hy(M,Z) x HY(M,C) — C
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368 31. ABEL'S THEOREM, PART II

is induced by

(7, w) |—>/7a).

The restriction of this pairing to Hy(M,Z) x Q!(M) is captured by
the period matrix of Chapter 21. An important fact is that, under
(31.0.2), both of these integration-induced products are nothing but
complex-linear extensions of (31.0.1).

Assuming this compatibility, we can quickly derive the Riemann
bilinear relations as follows. If for any closed 1-form ¢ € Q'(M) &

QY (M), we write
(@) == | ¢,
w
then (31.0.2) identifies

g
(31.0.3) lp] = g(”j((P)['YjJrg]_7Tj+g((P)['Yj])
=

in H'(M,C), i.e. as functionals on homology. One has for w, ¢ €
Ql(M)

8

G104 0= [ @hg=—} (m(9)mes() ~ T15(9)())
Z

by writing [, w A ¢ = ([w], [¢]) and expanding both classes as in
(31.0.3). Similar reasoning together with the local computation

idz Ndz = i(dx +idy) A (dx — idy) = i(—2idx AN dy) = 2dx N\ dy,

leads to
(31.0.5)

0< i/Mw Ao = —iié (an+g(w) - nj+g(w)nj(w)) .

This is all meant as motivation, though it can be made completely
rigorous. We'll start the first section with a more concrete, classical
proof of (31.0.4)-(31.0.5), without the compatibility assumptions on
the three bilinear pairings.
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31.1. Derivation of the Riemann Bilinear Relations

We start by cutting M open to get the “fundamental domain”, a
simply-connected closed region §

[ =)

fundamental e X
M domain .;}
Y

° Py

with boundary 9§. (Only a piece of it is shown in the picture.) Let py
in the interior of § be fixed. Given w € Q' (M),

u(p) = /:w

then yields a well-defined (single-valued) holomorphic' function on
3. If we take a second holomorphic form ¢ € Q! (M), then

d(up) =w AN ¢ =0.

That is, u¢ is a closed holomorphic form on § with the consequence

that
o=/d<u(p>=/u<p
5 oF

by Stokes’s theorem. Now, the picture above tells us that 95§ is the
composition of paths

”Yz_gl’Yg_ 1’72g’7g """ ’7;272_ 1’Yg+2727g_i1’yl_ 1’yg+1'yl,

written right to left (with inverse meaning the reverse direction). So
the last integral becomes

-~

9 0 p
fp,w f7g+jw+qu

=21 @ -up) e+ [ @) -ue)
=1 j % Vjtg S———~——
fr7w+f,ij+fqrw

7o be holomorphic on a closed set means that the function extends to a holomor-
phic function on a slightly larger open set (which, in this case, would live on the
universal cover of M).
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and, noting that [T w = [Tw = — [? w, this
& p p q

E( L wfer] o[ )

This calculation of |. o3 U¢ is evidently also valid with ¢ replaced by a

g+j

replacing it by i@ yields

oc/gw:/a&u(iw):ig(—L

more general (antiholomorphic, meromorphic) 1-form. In particular,
d(uw) i*8

w / w + / w / w).
v gt i
So we have recovered (31.0.4)-(31.0.5).

i
To reformulate this in matrix terms for any symplectic basis {7; ]zi 1
of Hi(M, Z) and any basis {w;};_, of Q!(M), notice that the (k, £)th
entry of?

g+j

4 4 — m =
m-Q-l= | my -- Tiag (_?I ]IS,) E
3 \J § — Ty —
T T 1 T AR L B
= —Tlg41 10 —Thg T - Tig :
} o \J — Ty —

is
8
Y (mj(wi) g j(we) — 7tj(we) gy j(wi)) s
j=1
which is zero by (31.0.4); so

(31.1.1) I1-Q-'T1=0.
Similarly,
(31.1.2) V-1I1-Q-TI>0

in the sense that 'x(v/—1I1- Q- II)x € Ry for any x € C&. In
particular, the diagonal entries of (31.1.2) are positive real.

ZRecall from Chapter 21 that 7; is the complex g-vector with i entry mj(w;)
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31.1.3. REMARK. Consider any two symplectic integral bases I' =
{7j}and T = {’y;} (thought of as row-vectors), so that

I"'=TA

for some A € SLy¢(Z). Applying the basis {w; } (viewed as a column-
vector of 1-forms) on the left yields

IT =T1A.
Furthermore, since both bases are symplectic we have Q = T - T and
Q=TT ="'ATTA ="AQA;

that is, A belongs to the symplectic group szg(Z). It is for this rea-
son that (31.1.1)-(31.1.2) are compatible with change of symplectic
basis: e.g., assuming (31.1.1), we have

ITQ'TT = TTAQ'A'TT = TTIQ'TI = 0.

Now thinking of the g x 2¢ period matrix as two g x g blocks,
viz.

(31.1.4) n=(A5),

we have

HQHz(A.B)( ] %>(ﬁg>=AfB—BfA
B

and
MQ'MI=A-"B-B-'A.
In these terms, (31.1.1) reads
(31.1.5) A-'B=B-'A
while (31.1.2) becomes
(31.1.6) —1'9(A'B-B'A)g >0 (VoeCs).

If ! A has nonzero kernel, then there exists v € C¢ satisfying ! Av = 0,
hence fv.A = 0 and Y45 = 0, contradicting (31.1.6). It follows that
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A is invertible, and so we have proved the statement on C-linear
independence asserted at the end of §30.2.

Applying A~! to the left of IT amounts to a change of the basis
{w;} for QY (M), viz.?

w1 a){

RTINS T S [

(,Ug w

~

If we apply it to (31.1.4), then we get
W=Al=(1, A'B).
We can therefore always assume that {w;} is chosen so that

n=(1, z),
again as claimed in §30.2. The bilinear relations (31.1.5)-(31.1.6) sim-
plify to

Z ="tz
(31.1.7) { VAZ-2)50 "

which in particular tell us that the imaginary part Im(Z) is a positive-
definite, real symmetric matrix.

31.2. Proof of Abel’s Theorem

With the holomorphic basis as normalized above, we can now
quickly establish (30.2.4) and hence (30.0.1). Write D = }_n;[P;] (with
Y-n; = 0) and let ¢ := #p be as in §30.2, so that

n.
31.2.1 Resp,(¢) = ——— (Vi
( ) est((P) 271'\/——1 ( Z)

and

/Tq):o G=1,...,9).

3 1" 7 . . .
Here the “product” of w; and v; is just the integral . y; Wit
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Foreachk =1,...,g set
p
ug(p) == / Wi
Po

on §, and let I be a 1-chain (sum of paths) on § with dI' = D. Then
noting D = Y; n;([P;] — [po]), we have

373

wi =Y _nju(P;) =2mv/—1 Y Resp(urg)
r i pelD|
which by the Residue Theorem

= [ e V@) e () = s (@ (9) = Tna()
® i I

If AJ(D) = 0 then there are integers m; (j = 1,...,2¢) such that

for every k
28
/wk = Z m]/ Wi
I j=1 i
Using f% wi = djx and Z = 'Z (from (31.1.7)), this

g g
= Mg+ ) Mg Tag(wi) = mp+ ) mjy ey g(w)).
= =

Now

8
Pi= = ) migwj
=

is still an element of J(— }_,¢|p|[p]) satisfying (31.2.1). Moreover, for
ke{l,...,8}

g
/rwk— ij+g7rk+g(wj) = my €4Z
j=1
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and
() = mp(e) — Y mipomp(wi) = —myy, €Z.
- ]; j+g 5 j g
kj

By Lemma 30.2.2, exp (271v/—1 [ ¢) now gives a meromorphic func-
tion with (f) = D.

31.3. Proof of Jacobi Inversion

To show that A] is surjective, we will study the image of a certain
class of (degree zero) divisor on M, namely those of the form

[p1] + - + [pa] —d[q]

given some fixed point 4 € M and natural number d. Such divi-
sors are obviously in 1-to-1 correspondence with unordered d-tuples
of points on M, in other words with elements of the dth symmetric

power
d copies

——N—
Mx---xM

(P1 -+ Pa) ~ (Poiyr -+ -1 Poa))
VoeS,

SymdM =

(These elements are written either p; + - - - + pg or {p1,...,ps}.) In
order to be able to use complex analytic techniques we need to put
the structure of a d-dimensional complex manifold on this.*

To get a feel for how this works, take d = 2 and consider C in-
stead of a (compact) Riemann surface. The symmetric square Sym>C
is the quotient of C x C by the involution (z1,2z2) + (22,z1). What
causes difficulty is the locus consisting of its fixed points, i.e. the

“Had we started with M itself of dimension > 1, its symmetric powers would be
singular complex analytic spaces, hence not manifolds. So what happens next is
special for dim(M) = 1.
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diagonal line. Take two small open sets in Sym*M, one which inter-
sects the diagonal and one which does not:

zZ,

Clearly (z1,z2) give local holomorphic coordinates on Ug. On Uj,
they are not well-defined, but their elementary symmetric polyno-
mials 01(z1,22) = z1 + 22 and 03(z1,22) = 21z, are. Moreover, these
functions generate all polynomials in z1,z, which are invariant un-
der the involution and hence well-defined on U, C Sym*C. Taking
(wq,wy) = (21 + 22,2122) as the holomorphic coordinates there,® the
transition function @, is then just (01, 02). To see that this is invert-
ible on U,g, notice that in U, the diagonal is defined by w? = 4w,
(since z1 = zp <= (21 + 22)? = 4z12y). Since Uyp avoids this locus
(and is simply connected), y/w? — 4w, is well defined there and we
can define ®g, by

w1t/ w%—4w2
2

Wy —+/ w%—4w2
2

More generally, in a neighborhood of

Z1 =

Zy) =

{q1,...,q0 .. ; 4o, .., q0} € Sym™M
—— ———

kq times k, times

>We could in fact take these as global coordinates, but this situation won’t gener-
alize to M.
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(where Zle kj = d), the local coordinate system is given in terms of
holomorphic coordinates z; on M near each g;, by

{Plz---/Pkl} }Pd—k4+1z---/Pd} —
S—— ~ o

all near q; all n:erar qe

(o1 (z1(p1)s - z1(pry)) o0 0y (21 (p1)s 21 (i) 5 -2
o1 (ze(Pa—icy+1)r- - 20(pa)) s 0k, (2e(Pa—kys1), - - - 2e(Pa))) -
Inelegant, but it gets the job done.
Now let D be any divisor of degree d on M, and consider the
mapping
ap : P(L£(D)) — Sym‘M
which sends (for f € £(D))

[f] = (f) +D.

Here (f) + D > 0 by definition, and deg((f) + D) = degD = d; so
(f) + D is indeed of the form [p1] + - - - + [p4]. The map sends the
projective equivalence class [f], i.e. “f up to a constant multiple”, to
{p1 - pat-

31.3.1. LEMMA. ap is (a) injective and (b) holomorphic.

31.3.2. DEFINITION. The linear system® |D| consists of all effective
divisors on M rationally equivalent to D. The Lemma evidently re-
alizes |D| = image(ap) as a subvariety of Sym?M isomorphic to
pP4D)-1

PROOF OF LEMMA. (a) (f)+D = (g) +D = (f) = (§) =
(f/8) =0 = f/gconstant = [f] = [g].

(b) To show ap holomorphic in a neighborhood of [fp], augment
fotoabasis {fo, f1, .-, fypy} C £(D) and write fu=fo +Zf(:Dl) uifi

so that {u j}f(:D1) are the local holomorphic coordinates (on some small
U C £(D)). Let p € |D|U [(fo)|, with open neighborhood NV, C M

and local coordinate z (ord,(z) = 1). Set k := ord,(fo) + ord,(D),

6The notation |D| is unfortunately standard for both the linear system and the
support of D, two completely different concepts!
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and Wfo,p = SymkNp with coordinates o (z1, ..., 2k), ..., 0k(21, .- ., 2k)-
We must show that the composition

k
U — OWN,) — Wg, — C
a1 (2(pr (), 2(pe())
— <leZord,,D> Ny —
I o (21 (1), - 2(pe()) )
pr(p) + -+ pr(p)

is holomorphic, which in turn boils down to the statement that each

ord, D

B fuz

0y is holomorphic in each y;. For k = 1, this is the holomorphic im-
plicit function theorem; for k > 1, it is this together with Rouché and
the Riemann extension theorem in a manner familiar from previous
chapters. O

31.3.3. DEFINITION. An effective degree d divisor D (viewed as
an element of Sym?M) is called general <= D = [p1] +--- + [p4]
with the {p;} distinct points of M.

Now look at the “Abel-Jacobi” mapping
ul: Sym'M — (M)

d
P+ 4 pal — A] (Z[m] - d[q]> :
j=1
where g € M is fixed. This is shown to be holomorphic by using
the fundamental theorem of calculus at general D, then applying the
Osgood and Riemann extension theorems. (Boundedness is clear by
taking a local lifting of the image of u“ to CS.)

The next result does not require D to be general.
31.3.4. LEMMA. The fiber of u® over u?(D) is |D| (= P/(P)-1),

PROOF. (For simplicity write u for u“.)

u=Y(u(D)) C |D|: u(E) = u(D) => AJ(E-D)=0 22 F_D
is the divisor of some f € K(M)* = (f)+ D = E > 0 (since
EcSym‘M) = f e £(D) = E =ap(f) € image(ap) = |D|.
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u~'(u(D)) D |D|: Given E € |D|, there exists f € £(D) such that

rat

E=(f)+D — E-D=(f) 20 — 0= AJ(E-D) —
u(E) = u(D) = E € u ' (u(D)). O

If D = [p1] + - - + [p4] is general, then writing zj for local coor-
dinates about each p;,

(du)p : Tp (Sym'M) — T,p)(J(M))
is computed by the matrix

0 vd Zj J vd Z;
oz Liet Jyg w1 ag Kiea Jy wg

9 yd zZi 9 vd zZi
g Dy r S Ny s S,

If we write locally (about each p)) w; £ fi(zj)dz;, this

Alp) 0 fe(pr) «— gx(p1) —
filpa) -+ fo(pa) — (PZ(\?;) —

—_—

where ¢ is the canonical map and ¢ (p;) € C8isa “lift” of gk (p;) €
P$~L. (For d = 1 this is just Proposition 30.1.2(b).) From this we see
that

rank <(dud)D> = dim (span(¢x(p1), ..., ¢x(pa))) +1,

where “span” means the projective linear span in IP$~!. Taking d =
g, we now have the following claim:

31.3.5. LEMMA. rank ((du8)p) = g for a generic’ choice of D =
[p1] + -+ [pg] € Sym8M, i.e. for D in some Zariski open subset of
Sym?M.

7“General” may not be quite enough — D may have to avoid a larger number of
subvarieties of Sym$ M then just the ones where two or more p;’s coincide.
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PROOF. Pick py, ..., pg distinct with span (¢ (p1), ..., ¢x(pg)) =
all of IP§~1. This is possible since the canonical map is always non-
degenerate by Theorem 28.3.3(a). Consequently rank ((dud)p) = g,
and this holds more generally for D in an algebraic open set. This
is because its failure is equivalent to det(du8) = 0, which is an alge-
braic condition which will hold on some codimension-one subvari-
ety. 0

31.3.6. THEOREM. [JACOBI INVERSION] u¢ is surjective and gener-
ically injective.

PROOF. By Lemma 31.3.5, du$ is generically an isomorphism of
tangent spaces. So u$ takes an open ball about a general point D &
Sym“M to an open ball. But u8 is continuous and Sym8M compact,
so image(u¢) is both a closed analytic subvariety of J(M) and con-
tains an open ball, and is therefore all of J(M) (which is connected).

Since at a generic D, duf is (in particular) injective, we see that
any such D is an isolated point of (u8)~1{u8(D)}. But the latter is a
projective space by Lemma 31.3.4, and so the only way D is isolated
is if (u8)~1{u8(D)} is isomorphic to P, i.e. is just D itself. O

Finally, to address (30.0.2) head-on, surjectivity of AJ follows from

the diagram
AJ
(31.3.7) Div'(M) —— J(M)
\ Tug
D—D—-g[q]

Sym38 M.

So we conclude that A induces an isomorphism Pic’(M) = J(M)
of abelian groups, giving a sort of group law on (linear systems of)
g-tuples of points of M.

31.4. A final remark on moduli

For any Riemann surface M (of genus > 1) with given symplec-
tic basis of Hi(M, Z), we know that there is a unique choice of basis
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for Q' (M) making the period matrix IT of the form (]Ig Z). More-
over, we know by (31.1.7) that Z is symmetric with positive definite
imaginary part, i.e. belongs to the ¢ Siegel upper half space

98 :={Z e My(C) | Z="Z, Im(Z) > 0}.

Note that $! is just §), the familiar upper half plane.

The Jacobian J(M) is the quotient of C¢ by the lattice A given by
integral linear combinations of the columns of I1. More generally, let
Z be any g X ¢ complex matrix such that (]Ig Z> has R-linearly in-
dependent column vectors. Writing A for their Z-span, we define a
complex torus by Az := C&/Az; any complex g-torus is isomorphic
to one of this form. A major result is the

31.4.1. THEOREM. [RIEMANN EMBEDDING THEOREM]| Ay is an
abelian variety (i.e., has a holomorphic embedding in projective space) if
and only if £Z belongs to $S.

(Of course, any T R-linearly independent from 1 is in the upper
or lower half plane, so every complex 1-torus is algebraic; already
for g = 2 this is false!) You can find (effectively) two proofs in [Grif-
tiths and Harris], one using generalized theta functions and the other
using Kodaira’s embedding theorem.

For us, the implications of this theorem are:

(@) Jacobians of Riemann surfaces of genus g are abelian varieties
of dimension g; and
(b) abelian varieties of dimension g have @ moduli.

Since Riemann surfaces of genus ¢ > 2 have 3¢ — 3 moduli, the fol-
lowing is believable:

31.4.2. PROPOSITION. For g < 4, all abelian g-folds are Jacobians (or
products of Jacobians); for ¢ > 4, “most” of them are not.

For ¢ > 4, then, we have the problem of characterizing the “Ja-
cobian locus” in the moduli space $3/Sp,(Z), which is the (very
difficult) Schottky problem. There are recent results describing this lo-
cus in terms of the vanishing of theta functions.
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Exercises

(1) What is the smallest value of d for which it is clear that u; has all
tibers of the same dimension (and what are they)?

(2) Let D, E > 0be effective divisors. Show that dim |D| + dim |E| <
dim |D + E|. [Hint: show that addition of divisors gives a map
|D| x |E| — |D + E| with finite fibers.]

(3) A divisor D on M is special if i(D), ¢(D) > 0. (a) Show that for D
special, /(D) < 1 deg(D) + 1. [Hint: First apply (2) to D and K —
D to bound /(D) + i(D), then use Riemann-Roch.] (b) For D €
Sym8M, show that D is special <= the fiber uy'(ug(D))(=
|D|) is not just the point D. (c) Conclude that the “special fibers”
of g have dimension in [1, §].

(4) Let M be hyperelliptic of genus g. Use Exercise (3) to completely
describe the fibers of u, (a) for ¢ = 2 and (b) for ¢ = 3. [Hint for
(b): you will need to show that there is no map f: M — P! of
degree 3. If there was, and D := (f)e = [p] + [g] + [r], use the
degree-2 map x: M — P! to construct ¢ with (g)e = x~1(x(p)).
What functions are in £(D’)? Apply Exercise (3)(a) to D’ := D +
() to reach a contradiction.]

(5) The automorphism group G of a Riemann surface M is infinite
if ¢ < 1 (why?). By a theorem of Hurwitz,? it is finite (of order
< 84(g—1))if g > 1. Here you will just prove an earlier theorem
of Schwarz that (for ¢ > 1) there are no continuous families of
automorphisms: suppose otherwise, and let 0} be a family with
0p = idpy;. For t small, o} preserves the homology classes of the
{7i} (but o # oy for t # t'). Show that ofw; = wjfor1 <j< g,
consider f := %/ and reach a contradiction.

81f you want a really hard computation, assume |G| < oo and apply the Riemann-
Hurwitz formula to the quotient X — X/G to get this bound. Another bound is
given by 2W!, where W is the number of Weierstrass points of M (i.e. those points
p for which g[p] is special).



