CHAPTER 31

Abel's Theorem, part II

As mentioned at the beginning of the previous chapter, on any Riemann surface M, we get a perfect pairing on homology

$$
\begin{equation*}
\langle,\rangle: H_{1}(M, \mathbb{Z}) \times H_{1}(M, \mathbb{Z}) \rightarrow \mathbb{Z} \tag{31.0.1}
\end{equation*}
$$

by intersecting 1-cycles. With respect to a symplectic basis $\left\{\gamma_{j}\right\}_{j=1}^{2 g}$ as described there, this pairing has $(2 g \times 2 g)$ matrix

$$
Q=\left(\begin{array}{cc}
0 & \mathbb{I}_{g} \\
-\mathbb{I}_{g} & 0
\end{array}\right)
$$

We can use (31.0.1) to produce an isomorphism of dual spaces

$$
\begin{equation*}
H_{1}(M, \mathbb{C})=H_{1}(M, \mathbb{Z}) \otimes \mathbb{C} \xrightarrow{\cong} \operatorname{Hom}\left(H_{1}(M, \mathbb{Z}), \mathbb{C}\right)=H^{1}(M, \mathbb{C}) \tag{31.0.2}
\end{equation*}
$$

which is a special case of Poincaré duality.
Recalling the isomorphisms

$$
\Omega^{1}(M) \oplus \overline{\Omega^{1}(M)} \xrightarrow{\cong} H_{d R}^{1}(M, \mathbb{C}) \stackrel{\cong}{\cong} H^{1}(M, \mathbb{C}),
$$

there is also a pairing (the "cup-product")

$$
H^{1}(M, \mathbb{C}) \times H^{1}(M, \mathbb{C}) \rightarrow \mathbb{C}
$$

induced on the level of 1-forms by

$$
(\omega, \eta) \longmapsto \int_{M} \omega \wedge \eta
$$

Notice that since two holomorphic forms wedge to zero, this pairing restricts to zero on $\Omega^{1}(M) \times \Omega^{1}(M)$ (and $\overline{\Omega^{1}(M)} \times \overline{\Omega^{1}(M)}$).

Yet another pairing (the "cap-product")

$$
H_{1}(M, \mathbb{Z}) \times H^{1}(M, \mathbb{C}) \rightarrow \mathbb{C}
$$

is induced by

$$
(\gamma, \omega) \mapsto \int_{\gamma} \omega
$$

The restriction of this pairing to $H_{1}(M, \mathbb{Z}) \times \Omega^{1}(M)$ is captured by the period matrix of Chapter 21. An important fact is that, under (31.0.2), both of these integration-induced products are nothing but complex-linear extensions of (31.0.1).

Assuming this compatibility, we can quickly derive the Riemann
 $\overline{\Omega^{1}(M)}$, we write

$$
\pi_{j}(\varphi):=\int_{\gamma_{j}} \varphi
$$

then (31.0.2) identifies

$$
\begin{equation*}
[\varphi]=\sum_{j=1}^{g}\left(\pi_{j}(\varphi)\left[\gamma_{j+g}\right]-\pi_{j+g}(\varphi)\left[\gamma_{j}\right]\right) \tag{31.0.3}
\end{equation*}
$$

in $H^{1}(M, \mathbb{C})$, i.e. as functionals on homology. One has for $\omega, \varphi \in$ $\Omega^{1}(M)$

$$
\begin{equation*}
0=\int_{M} \omega \wedge \varphi=-\sum_{j=1}^{g}\left(\pi_{j}(\varphi) \pi_{j+g}(\omega)-\pi_{j+g}(\varphi) \pi_{j}(\omega)\right) \tag{31.0.4}
\end{equation*}
$$

by writing $\int_{M} \omega \wedge \varphi=\langle[\omega],[\varphi]\rangle$ and expanding both classes as in (31.0.3). Similar reasoning together with the local computation

$$
i d z \wedge d \bar{z}=i(d x+i d y) \wedge(d x-i d y)=i(-2 i d x \wedge d y)=2 d x \wedge d y
$$

leads to
(31.0.5)

$$
0<i \int_{M} \omega \wedge \bar{\omega}=-i \sum_{i=1}^{g}\left(\overline{\pi_{j}(\omega)} \pi_{j+g}(\omega)-\overline{\pi_{j+g}(\omega)} \pi_{j}(\omega)\right)
$$

This is all meant as motivation, though it can be made completely rigorous. We'll start the first section with a more concrete, classical proof of (31.0.4)-(31.0.5), without the compatibility assumptions on the three bilinear pairings.

31.1. Derivation of the Riemann Bilinear Relations

We start by cutting M open to get the "fundamental domain", a simply-connected closed region \mathfrak{F}

with boundary $\partial \mathfrak{F}$. (Only a piece of it is shown in the picture.) Let p_{0} in the interior of \mathfrak{F} be fixed. Given $\omega \in \Omega^{1}(M)$,

$$
u(p):=\int_{p_{0}}^{p} \omega
$$

then yields a well-defined (single-valued) holomorphic ${ }^{1}$ function on \mathfrak{F}. If we take a second holomorphic form $\varphi \in \Omega^{1}(M)$, then

$$
d(u \varphi)=\omega \wedge \varphi=0
$$

That is, $u \varphi$ is a closed holomorphic form on \mathfrak{F} with the consequence that

$$
0=\int_{\mathfrak{F}} d(u \varphi)=\int_{\partial \mathfrak{F}} u \varphi
$$

by Stokes's theorem. Now, the picture above tells us that $\partial \mathfrak{F}$ is the composition of paths

$$
\gamma_{2 g}^{-1} \gamma_{g}^{-1} \gamma_{2 g} \gamma_{g} \cdots \cdot \gamma_{g+2}^{-1} \gamma_{2}^{-1} \gamma_{g+2} \gamma_{2} \gamma_{g+1}^{-1} \gamma_{1}^{-1} \gamma_{g+1} \gamma_{1}
$$

written right to left (with inverse meaning the reverse direction). So the last integral becomes

$$
=\sum_{j=1}^{g}\{\int_{\gamma_{j}} \underbrace{\left(u(p)-u\left(p^{\prime}\right)\right)}_{\int_{p^{\prime}}^{q} \omega-\int_{\gamma_{g+j}} \omega+\int_{q}^{p} \omega} \varphi+\int_{\gamma_{j+g}} \underbrace{\left(u(r)-u\left(r^{\prime}\right)\right)}_{\int_{r^{\prime}}^{q} \omega+\int_{\gamma_{j}} \omega+\int_{q}^{r} \omega} \varphi\}
$$

[^0]and, noting that $\int_{p^{\prime}}^{q} \omega=\int_{p}^{q} \omega=-\int_{q}^{p} \omega$, this
$$
=\sum_{j=1}^{g}\left(-\int_{\gamma_{g+j}} \omega \int_{\gamma_{j}} \varphi+\int_{\gamma_{g+j}} \varphi \int_{\gamma_{j}} \omega\right) .
$$

This calculation of $\int_{\partial \mathfrak{F}} u \varphi$ is evidently also valid with φ replaced by a more general (antiholomorphic, meromorphic) 1-form. In particular, replacing it by $i \bar{\omega}$ yields

$$
0<i \int_{\mathfrak{F}} \underbrace{\omega \wedge \bar{\omega}}_{d(u \bar{\omega})}=\int_{\partial \mathfrak{F}} u(i \bar{\omega})=i \sum_{j=1}^{g}\left(-\int_{\gamma_{j+g}} \omega \int_{\gamma_{j}} \bar{\omega}+\int_{\gamma_{g+j}} \bar{\omega} \int_{\gamma_{j}} \omega\right)
$$

So we have recovered (31.0.4)-(31.0.5).
To reformulate this in matrix terms for any symplectic basis $\left\{\gamma_{j}\right\}_{j=1}^{2 g}$ of $H_{1}(M, \mathbb{Z})$ and any basis $\left\{\omega_{i}\right\}_{i=1}^{g}$ of $\Omega^{1}(M)$, notice that the $(k, \ell)^{\text {th }}$ entry of ${ }^{2}$

$$
\left.\begin{array}{l}
\Pi \cdot Q \cdot{ }^{t} \Pi=\left(\begin{array}{ccc}
\uparrow & & \uparrow \\
\pi_{1} & \cdots & \pi_{2 g} \\
\downarrow & & \downarrow
\end{array}\right)\left(\begin{array}{ccc}
0 & \mathbb{I}_{g} \\
-\mathbb{I}_{g} & 0
\end{array}\right)\left(\begin{array}{ccc}
\leftarrow & \pi_{1} & \rightarrow \\
\vdots & \\
\leftarrow & \pi_{2 g} & \rightarrow
\end{array}\right) \\
=\left(\begin{array}{ccccc}
\uparrow & & \uparrow & \uparrow & \\
-\pi_{g+1} & \cdots & -\pi_{2 g} & \pi_{1} & \cdots
\end{array} \pi_{g}\right. \\
\downarrow
\end{array} \quad \begin{array}{llll}
\downarrow & \downarrow & & \downarrow
\end{array}\right)\left(\begin{array}{ccc}
\leftarrow & \pi_{1} & \rightarrow \\
\vdots & \\
\leftarrow & \pi_{2 g} & \rightarrow
\end{array}\right), ~ l
$$

is

$$
\sum_{j=1}^{g}\left(\pi_{j}\left(\omega_{k}\right) \pi_{g+j}\left(\omega_{\ell}\right)-\pi_{j}\left(\omega_{\ell}\right) \pi_{g+j}\left(\omega_{k}\right)\right)
$$

which is zero by (31.0.4); so

$$
\begin{equation*}
\Pi \cdot Q \cdot{ }^{t} \Pi=0 \tag{31.1.1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\sqrt{-1} \Pi \cdot Q \cdot t \bar{\Pi}>0 \tag{31.1.2}
\end{equation*}
$$

in the sense that ${ }^{t} \underline{x}\left(\sqrt{-1} \Pi \cdot Q \cdot{ }^{t} \bar{\Pi}\right) \underline{\bar{x}} \in \mathbb{R}_{>0}$ for any $\underline{x} \in \mathbb{C}^{g}$. In particular, the diagonal entries of (31.1.2) are positive real.

[^1]31.1.3. REMARK. Consider any two symplectic integral bases $\Gamma=$ $\left\{\gamma_{j}\right\}$ and $\Gamma=\left\{\gamma_{j}^{\prime}\right\}$ (thought of as row-vectors), so that
$$
\Gamma^{\prime}=\Gamma A
$$
for some $A \in \mathrm{SL}_{2 g}(\mathbb{Z})$. Applying the basis $\left\{\omega_{i}\right\}$ (viewed as a columnvector of 1-forms) on the left yields
$$
\Pi^{\prime}=\Pi A
$$

Furthermore, since both bases are symplectic we have $Q={ }^{t} \Gamma \cdot \Gamma$ and

$$
Q={ }^{t} \Gamma^{\prime} \cdot \Gamma^{\prime}={ }^{t} A^{t} \Gamma \Gamma A={ }^{t} A Q A ;
$$

that is, A belongs to the symplectic group $\mathrm{Sp}_{2 g}(\mathbb{Z})$. It is for this reason that (31.1.1)-(31.1.2) are compatible with change of symplectic basis: e.g., assuming (31.1.1), we have

$$
\Pi^{\prime} Q^{t} \Pi^{\prime}=\Pi A Q^{t} A^{t} \Pi=\Pi Q^{t} \Pi=0
$$

Now thinking of the $g \times 2 g$ period matrix as two $g \times g$ blocks, viz.

$$
\Pi=\left(\begin{array}{ll}
\mathcal{A} & \mathcal{B} \tag{31.1.4}
\end{array}\right)
$$

we have

$$
\Pi Q^{t} \Pi=\left(\begin{array}{ll}
\mathcal{A} & \mathcal{B}
\end{array}\right)\left(\begin{array}{ll}
& \mathbb{I}_{g} \\
-\mathbb{I}_{g} &
\end{array}\right)\binom{{ }^{t} \mathcal{A}}{{ }^{t} \mathcal{B}}=\mathcal{A} \cdot{ }^{t} \mathcal{B}-\mathcal{B} \cdot{ }^{t} \mathcal{A}
$$

and

$$
\Pi Q^{t} \bar{\Pi}=\mathcal{A} \cdot{ }^{t} \overline{\mathcal{B}}-\mathcal{B} \cdot{ }^{t} \overline{\mathcal{A}} .
$$

In these terms, (31.1.1) reads

$$
\begin{equation*}
\mathcal{A} \cdot{ }^{t} \mathcal{B}=\mathcal{B} \cdot{ }^{t} \mathcal{A} \tag{31.1.5}
\end{equation*}
$$

while (31.1.2) becomes

$$
\begin{equation*}
\sqrt{-1}^{t} \underline{v}\left(\mathcal{A}^{t} \overline{\mathcal{B}}-\mathcal{B}^{t} \overline{\mathcal{A}}\right) \underline{\bar{v}}>0 \quad\left(\forall \underline{v} \in \mathbb{C}^{g}\right) . \tag{31.1.6}
\end{equation*}
$$

If ${ }^{t} \mathcal{A}$ has nonzero kernel, then there exists $\underline{v} \in \mathbb{C}^{g}$ satisfying ${ }^{t} \mathcal{A} \underline{v}=0$, hence ${ }^{t} \underline{\mathcal{v}} \mathcal{A}=0$ and ${ }^{t} \overline{\mathcal{A}} \underline{\underline{v}}=0$, contradicting (31.1.6). It follows that
\mathcal{A} is invertible, and so we have proved the statement on \mathbb{C}-linear independence asserted at the end of $\S 30.2$.

Applying \mathcal{A}^{-1} to the left of Π amounts to a change of the basis $\left\{\omega_{i}\right\}$ for $\Omega^{1}(M)$, viz. ${ }^{3}$

$$
\mathcal{A}^{-1} \Pi=\mathcal{A}^{-1}\left(\begin{array}{c}
\omega_{1} \\
\vdots \\
\omega_{g}
\end{array}\right)\left(\begin{array}{lll}
\gamma_{1} & \cdots & \gamma_{2 g}
\end{array}\right)=\left(\begin{array}{c}
\omega_{1}^{\prime} \\
\vdots \\
\omega_{g}^{\prime}
\end{array}\right)\left(\begin{array}{lll}
\gamma_{1} & \cdots & \gamma_{2 g}
\end{array}\right) .
$$

If we apply it to (31.1.4), then we get

$$
\Pi^{\prime}:=\mathcal{A}^{-1} \Pi=\left(\begin{array}{ll}
\mathbb{I}_{g} & \mathcal{A}^{-1} \mathcal{B}
\end{array}\right) .
$$

We can therefore always assume that $\left\{\omega_{i}\right\}$ is chosen so that

$$
\Pi=\left(\begin{array}{ll}
\mathbb{I}_{g} & Z
\end{array}\right)
$$

again as claimed in $\S 30.2$. The bilinear relations (31.1.5)-(31.1.6) simplify to

$$
\left\{\begin{array}{c}
Z={ }^{t} Z \tag{31.1.7}\\
\sqrt{-1}(\bar{Z}-Z)>0
\end{array}\right.
$$

which in particular tell us that the imaginary part $\operatorname{Im}(Z)$ is a positivedefinite, real symmetric matrix.

31.2. Proof of Abel's Theorem

With the holomorphic basis as normalized above, we can now quickly establish (30.2.4) and hence (30.0.1). Write $D=\sum n_{i}\left[P_{i}\right]$ (with $\left.\sum n_{i}=0\right)$ and let $\varphi:=\widetilde{\eta_{D}}$ be as in $\S 30.2$, so that

$$
\begin{equation*}
\operatorname{Res}_{P_{i}}(\varphi)=\frac{n_{i}}{2 \pi \sqrt{-1}}(\forall i) \tag{31.2.1}
\end{equation*}
$$

and

$$
\int_{\gamma_{j}} \varphi=0 \quad(j=1, \ldots, g)
$$

[^2]For each $k=1, \ldots, g$ set

$$
u_{k}(p):=\int_{p_{0}}^{p} \omega_{k}
$$

on \mathfrak{F}, and let Γ be a 1-chain (sum of paths) on \mathfrak{F} with $\partial \Gamma=D$. Then noting $D=\sum_{i} n_{i}\left(\left[P_{i}\right]-\left[p_{0}\right]\right)$, we have

$$
\int_{\Gamma} \omega_{k}=\sum_{i} n_{i} u_{k}\left(P_{i}\right)=2 \pi \sqrt{-1} \sum_{p \in|D|} \operatorname{Res}_{p}\left(u_{k} \varphi\right)
$$

which by the Residue Theorem

$$
=\int_{\partial \mathfrak{F}} u_{k} \varphi \stackrel{\S 31.1}{=} \sum_{j}(\underbrace{\pi_{j}\left(\omega_{k}\right)}_{\delta_{j k}} \pi_{g+j}(\varphi)-\pi_{g+j}\left(\omega_{k}\right) \underbrace{\pi_{j}(\varphi)}_{0})=\pi_{g+k}(\varphi) .
$$

If $A J(D)=0$ then there are integers $m_{j}(j=1, \ldots, 2 g)$ such that for every k

$$
\int_{\Gamma} \omega_{k}=\sum_{j=1}^{2 g} m_{j} \int_{\gamma_{j}} \omega_{k}
$$

Using $\int_{\gamma_{j}} \omega_{k}=\delta_{j k}$ and $Z={ }^{t} Z$ (from (31.1.7)), this

$$
=m_{k}+\sum_{j=1}^{g} m_{j+g} \pi_{j+g}\left(\omega_{k}\right)=m_{k}+\sum_{j=1}^{g} m_{j+g} \pi_{k+g}\left(\omega_{j}\right) .
$$

Now

$$
\hat{\varphi}:=\varphi-\sum_{j=1}^{g} m_{j+g} \omega_{j}
$$

is still an element of $\mathfrak{I}\left(-\sum_{p \in|D|}[p]\right)$ satisfying (31.2.1). Moreover, for $k \in\{1, \ldots, g\}$

$$
\begin{aligned}
& \pi_{k+g}(\hat{\varphi})=\pi_{k+g}(\varphi)-\sum_{j=1}^{g} m_{j+g} \pi_{k+g}\left(\omega_{j}\right) \\
& =\int_{\Gamma} \omega_{k}-\sum_{j=1}^{g} m_{j+g} \pi_{k+g}\left(\omega_{j}\right)=m_{k} \in \mathbb{Z}
\end{aligned}
$$

and

$$
\pi_{k}(\hat{\varphi})=\underbrace{\pi_{k}(\varphi)}_{0}-\sum_{j=1}^{g} m_{j+g} \underbrace{\pi_{k}\left(\omega_{j}\right)}_{\delta_{k j}}=-m_{k+g} \in \mathbb{Z}
$$

By Lemma 30.2.2, $\exp \left(2 \pi \sqrt{-1} \int \hat{\varphi}\right)$ now gives a meromorphic function with $(f)=D$.

31.3. Proof of Jacobi Inversion

To show that $A J$ is surjective, we will study the image of a certain class of (degree zero) divisor on M, namely those of the form

$$
\left[p_{1}\right]+\cdots+\left[p_{d}\right]-d[q]
$$

given some fixed point $q \in M$ and natural number d. Such divisors are obviously in 1-to-1 correspondence with unordered d-tuples of points on M, in other words with elements of the $d^{\text {th }}$ symmetric power

$$
\operatorname{Sym}^{d} M:=\frac{\overbrace{M \times \cdots \times M}^{d \text { copies }}}{\left.\left(p_{1}, \ldots, p_{d}\right) \underset{\substack{\sim \\ \forall \sigma \in \mathfrak{S}_{d}}}{ }, \ldots, p_{\sigma(d)}\right)} .
$$

(These elements are written either $p_{1}+\cdots+p_{d}$ or $\left\{p_{1}, \ldots, p_{d}\right\}$.) In order to be able to use complex analytic techniques we need to put the structure of a d-dimensional complex manifold on this. ${ }^{4}$

To get a feel for how this works, take $d=2$ and consider \mathbb{C} instead of a (compact) Riemann surface. The symmetric square $S_{y m}{ }^{2} \mathbb{C}$ is the quotient of $\mathbb{C} \times \mathbb{C}$ by the involution $\left(z_{1}, z_{2}\right) \mapsto\left(z_{2}, z_{1}\right)$. What causes difficulty is the locus consisting of its fixed points, i.e. the

[^3]diagonal line. Take two small open sets in $S y m^{2} M$, one which intersects the diagonal and one which does not:

Clearly $\left(z_{1}, z_{2}\right)$ give local holomorphic coordinates on U_{β}. On U_{α}, they are not well-defined, but their elementary symmetric polynomials $\sigma_{1}\left(z_{1}, z_{2}\right)=z_{1}+z_{2}$ and $\sigma_{2}\left(z_{1}, z_{2}\right)=z_{1} z_{2}$ are. Moreover, these functions generate all polynomials in z_{1}, z_{2} which are invariant under the involution and hence well-defined on $U_{\alpha} \subset$ Sym $^{2} \mathbb{C}$. Taking $\left(w_{1}, w_{2}\right):=\left(z_{1}+z_{2}, z_{1} z_{2}\right)$ as the holomorphic coordinates there, ${ }^{5}$ the transition function $\Phi_{\alpha \beta}$ is then just $\left(\sigma_{1}, \sigma_{2}\right)$. To see that this is invertible on $U_{\alpha \beta}$, notice that in U_{α} the diagonal is defined by $w_{1}^{2}=4 w_{2}$ (since $\left.z_{1}=z_{2} \Longleftrightarrow\left(z_{1}+z_{2}\right)^{2}=4 z_{1} z_{2}\right)$. Since $U_{\alpha \beta}$ avoids this locus (and is simply connected), $\sqrt{w_{1}^{2}-4 w_{2}}$ is well defined there and we can define $\Phi_{\beta \alpha}$ by

$$
\left\{\begin{array}{l}
z_{1}=\frac{w_{1}+\sqrt{w_{1}^{2}-4 w_{2}}}{2} \\
z_{2}=\frac{w_{2}-\sqrt{w_{1}^{2}-4 w_{2}}}{2}
\end{array} .\right.
$$

More generally, in a neighborhood of

$$
\{\underbrace{q_{1}, \ldots, q_{1}}_{k_{1} \text { times }} ; \ldots ; \underbrace{q_{\ell}, \ldots, q_{\ell}}_{k_{\ell} \text { times }}\} \in \operatorname{Sym}^{d} M
$$

[^4](where $\sum_{j=1}^{\ell} k_{j}=d$), the local coordinate system is given in terms of holomorphic coordinates z_{j} on M near each q_{j}, by
\[

$$
\begin{gathered}
\{\underbrace{p_{1}, \ldots, p_{k_{1}}}_{\text {all near } q_{1}} ; \ldots ; \underbrace{p_{d-k_{\ell}+1}, \ldots, p_{d}}_{\text {all near } q_{\ell}}\} \longmapsto \\
\left(\sigma_{1}\left(z_{1}\left(p_{1}\right), \ldots, z_{1}\left(p_{k_{1}}\right)\right), \ldots, \sigma_{k_{1}}\left(z_{1}\left(p_{1}\right), \ldots, z_{1}\left(p_{k_{1}}\right)\right) ; \ldots ;\right. \\
\left.\sigma_{1}\left(z_{\ell}\left(p_{d-k_{\ell}+1}\right), \ldots, z_{\ell}\left(p_{d}\right)\right), \ldots, \sigma_{k_{\ell}}\left(z_{\ell}\left(p_{d-k_{\ell}+1}\right), \ldots, z_{\ell}\left(p_{d}\right)\right)\right) .
\end{gathered}
$$
\]

Inelegant, but it gets the job done.
Now let D be any divisor of degree d on M, and consider the mapping

$$
\alpha_{D}: \mathbb{P}(\mathfrak{L}(D)) \rightarrow \text { Sym }^{d} M
$$

which sends (for $f \in \mathfrak{L}(D)$)

$$
[f] \mapsto(f)+D
$$

Here $(f)+D \geq 0$ by definition, and $\operatorname{deg}((f)+D)=\operatorname{deg} D=d$; so $(f)+D$ is indeed of the form $\left[p_{1}\right]+\cdots+\left[p_{d}\right]$. The map sends the projective equivalence class $[f]$, i.e. " f up to a constant multiple", to $\left\{p_{1}, \ldots, p_{d}\right\}$.
31.3.1. LEMMA. α_{D} is (a) injective and (b) holomorphic.
31.3.2. DEF INITION. The linear system ${ }^{6}|D|$ consists of all effective divisors on M rationally equivalent to D. The Lemma evidently realizes $|D|=\operatorname{image}\left(\alpha_{D}\right)$ as a subvariety of $S y m^{d} M$ isomorphic to $\mathbb{P}^{\ell(D)-1}$ 。

Proof of Lemma. (a) $(f)+D=(g)+D \Longrightarrow(f)=(g) \Longrightarrow$ $(f / g)=0 \Longrightarrow f / g$ constant $\Longrightarrow[f]=[g]$.
(b) To show α_{D} holomorphic in a neighborhood of $\left[f_{0}\right]$, augment f_{0} to a basis $\left\{f_{0}, f_{1}, \ldots, f_{\ell(D)}\right\} \subset \mathfrak{L}(D)$ and write $f_{\underline{\mu}}:=f_{0}+\sum_{j=1}^{\ell(D)} \mu_{j} f_{j}$ so that $\left\{\mu_{j}\right\}_{j=1}^{\ell(D)}$ are the local holomorphic coordinates (on some small $U \subset \mathfrak{L}(D)$). Let $p \in|D| \cup\left|\left(f_{0}\right)\right|$, with open neighborhood $\mathcal{N}_{p} \subset M$ and local coordinate $z\left(\operatorname{ord}_{p}(z)=1\right)$. Set $k:=\operatorname{ord}_{p}\left(f_{0}\right)+\operatorname{ord}_{p}(D)$,

[^5]and $\mathcal{W}_{f_{0}, p}:=\operatorname{Sym}^{k} \mathcal{N}_{p}$ with coordinates $\sigma_{1}\left(z_{1}, \ldots, z_{k}\right), \ldots, \sigma_{k}\left(z_{1}, \ldots, z_{k}\right)$. We must show that the composition
\[

$$
\begin{aligned}
& U \longrightarrow \mathcal{O}\left(\mathcal{N}_{p}\right) \longrightarrow \mathcal{W}_{f_{0}, p} \hookrightarrow \mathbb{C}^{k}
\end{aligned}
$$
\]

is holomorphic, which in turn boils down to the statement that each σ_{ℓ} is holomorphic in each μ_{j}. For $k=1$, this is the holomorphic implicit function theorem; for $k>1$, it is this together with Rouché and the Riemann extension theorem in a manner familiar from previous chapters.
31.3.3. DEFINITION. An effective degree d divisor D (viewed as an element of $\left.S^{d}{ }^{d} M\right)$ is called general $\Longleftrightarrow D=\left[p_{1}\right]+\cdots+\left[p_{d}\right]$ with the $\left\{p_{j}\right\}$ distinct points of M.

Now look at the "Abel-Jacobi" mapping

$$
\begin{aligned}
u^{d}: \operatorname{Sym}^{d} M & \longrightarrow J(M) \\
{\left[p_{1}\right]+\cdots+\left[p_{d}\right] } & \longmapsto A J\left(\sum_{j=1}^{d}\left[p_{j}\right]-d[q]\right),
\end{aligned}
$$

where $q \in M$ is fixed. This is shown to be holomorphic by using the fundamental theorem of calculus at general D, then applying the Osgood and Riemann extension theorems. (Boundedness is clear by taking a local lifting of the image of u^{d} to \mathbb{C}^{g}.)

The next result does not require D to be general.
31.3.4. LEMMA. The fiber of u^{d} over $u^{d}(D)$ is $|D|\left(\cong \mathbb{P}^{\ell(D)-1}\right)$.

PROOF. (For simplicity write u for u^{d}.)
$u^{-1}(u(D)) \subset|D|: u(E)=u(D) \Longrightarrow A J(E-D)=0 \stackrel{\text { Abel }}{\Longrightarrow} E-D$
is the divisor of some $f \in \mathcal{K}(M)^{*} \Longrightarrow(f)+D=E \geq 0$ (since $\left.E \in \operatorname{Sym}^{d} M\right) \Longrightarrow f \in \mathfrak{L}(D) \Longrightarrow E=\alpha_{D}(f) \in \operatorname{image}\left(\alpha_{D}\right)=|D|$.
$u^{-1}(u(D)) \supset|D|$: Given $E \in|D|$, there exists $f \in \mathfrak{L}(D)$ such that $E=(f)+D \Longrightarrow E-D=(f) \stackrel{\text { rat }}{=} 0 \Longrightarrow 0=A J(E-D) \Longrightarrow$ $u(E)=u(D) \Longrightarrow E \in u^{-1}(u(D))$.

If $D=\left[p_{1}\right]+\cdots+\left[p_{d}\right]$ is general, then writing z_{j} for local coordinates about each p_{j},

$$
\left(d u^{d}\right)_{D}: T_{D}\left(S y m^{d} M\right) \longrightarrow T_{u(D)}(J(M))
$$

is computed by the matrix

$$
\left.\left(\begin{array}{ccc}
\frac{\partial}{\partial z_{1}} \sum_{i=1}^{d} \int_{q}^{z_{i}} \omega_{1} & \cdots & \frac{\partial}{\partial z_{1}} \sum_{i=1}^{d} \int_{q}^{z_{i}} \omega_{g} \\
\vdots & \frac{\partial}{\partial z_{d}} \sum_{i=1}^{d} \int_{q}^{z_{i}} \omega_{1} & \cdots \\
\frac{\partial}{\partial z_{d}} \sum_{i=1}^{d} \int_{q}^{z_{i}} \omega_{g}
\end{array}\right)\right|_{\left\{p_{1}, \ldots, p_{d}\right\}} .
$$

If we write locally (about each p_{j}) $\omega_{i} \stackrel{\text { loc }}{=} f_{i}\left(z_{j}\right) d z_{j}$, this

$$
=\left(\begin{array}{ccc}
f_{1}\left(p_{1}\right) & \cdots & f_{g}\left(p_{1}\right) \\
\vdots & \ddots & \vdots \\
f_{1}\left(p_{d}\right) & \cdots & f_{g}\left(p_{d}\right)
\end{array}\right)=\left(\begin{array}{cc}
\leftarrow \widetilde{\varphi_{K}\left(p_{1}\right)} & \rightarrow \\
\vdots \\
\leftarrow \widetilde{\varphi_{K}\left(p_{d}\right)} & \rightarrow
\end{array}\right),
$$

where φ_{K} is the canonical map and $\widetilde{\varphi_{K}\left(p_{j}\right)} \in \mathbb{C}^{\delta}$ is a "lift" of $\varphi_{K}\left(p_{j}\right) \in$ \mathbb{P}^{g-1}. (For $d=1$ this is just Proposition 30.1.2(b).) From this we see that

$$
\operatorname{rank}\left(\left(d u^{d}\right)_{D}\right)=\operatorname{dim}\left(\operatorname{span}\left(\varphi_{K}\left(p_{1}\right), \ldots, \varphi_{K}\left(p_{d}\right)\right)\right)+1
$$

where "span" means the projective linear span in $\mathbb{P}^{g^{-1}}$. Taking $d=$ g, we now have the following claim:
31.3.5. Lemma. rank $\left(\left(d u^{g}\right)_{D}\right)=g$ for a generic ${ }^{7}$ choice of $D=$ $\left[p_{1}\right]+\cdots+\left[p_{g}\right] \in \operatorname{Sym}^{8} M$, i.e. for D in some Zariski open subset of Sym ${ }^{d}$.

[^6]PROOF. Pick p_{1}, \ldots, p_{g} distinct with span $\left(\varphi_{K}\left(p_{1}\right), \ldots, \varphi_{K}\left(p_{g}\right)\right)=$ all of \mathbb{P}^{g-1}. This is possible since the canonical map is always nondegenerate by Theorem 28.3.3(a). Consequently rank $\left(\left(d u^{g}\right)_{D}\right)=g$, and this holds more generally for D in an algebraic open set. This is because its failure is equivalent to $\operatorname{det}\left(d u^{g}\right)=0$, which is an algebraic condition which will hold on some codimension-one subvariety.
31.3.6. THEOREM. [JACOBI INVERSION] u^{g} is surjective and generically injective.

Proof. By Lemma 31.3.5, $d u^{g}$ is generically an isomorphism of tangent spaces. So u^{g} takes an open ball about a general point $D \in$ Sym ${ }^{d} M$ to an open ball. But u^{g} is continuous and $\operatorname{Sym}^{g} M$ compact, so image $\left(u^{g}\right)$ is both a closed analytic subvariety of $J(M)$ and contains an open ball, and is therefore all of $J(M)$ (which is connected).

Since at a generic $D, d u^{g}$ is (in particular) injective, we see that any such D is an isolated point of $\left(u^{g}\right)^{-1}\left\{u^{g}(D)\right\}$. But the latter is a projective space by Lemma 31.3.4, and so the only way D is isolated is if $\left(u^{g}\right)^{-1}\left\{u^{g}(D)\right\}$ is isomorphic to \mathbb{P}^{0}, i.e. is just D itself.

Finally, to address (30.0.2) head-on, surjectivity of $A J$ follows from the diagram

So we conclude that $A J$ induces an isomorphism $\operatorname{Pic}^{0}(M) \cong J(M)$ of abelian groups, giving a sort of group law on (linear systems of) g-tuples of points of M.

31.4. A final remark on moduli

For any Riemann surface M (of genus ≥ 1) with given symplectic basis of $H_{1}(M, \mathbb{Z})$, we know that there is a unique choice of basis
for $\Omega^{1}(M)$ making the period matrix Π of the form $\left(\mathbb{I}_{g} \quad Z\right)$. Moreover, we know by (31.1.7) that Z is symmetric with positive definite imaginary part, i.e. belongs to the $g^{\text {th }}$ Siegel upper half space

$$
\mathfrak{H}^{g}:=\left\{Z \in M_{g}(\mathbb{C}) \mid Z={ }^{t} Z, \operatorname{Im}(Z)>0\right\} .
$$

Note that \mathfrak{H}^{1} is just \mathfrak{H}, the familiar upper half plane.
The Jacobian $J(M)$ is the quotient of \mathbb{C}^{g} by the lattice Λ_{M} given by integral linear combinations of the columns of Π. More generally, let Z be any $g \times g$ complex matrix such that $\left(\mathbb{I}_{g} \quad Z\right)$ has \mathbb{R}-linearly independent column vectors. Writing Λ_{Z} for their \mathbb{Z}-span, we define a complex torus by $A_{Z}:=\mathbb{C}^{g} / \Lambda_{Z}$; any complex g-torus is isomorphic to one of this form. A major result is the
31.4.1. Theorem. [Riemann Embedding Theorem] A_{Z} is an abelian variety (i.e., has a holomorphic embedding in projective space) if and only if $\pm Z$ belongs to \mathfrak{H}^{g}.
(Of course, any $\tau \mathbb{R}$-linearly independent from 1 is in the upper or lower half plane, so every complex 1-torus is algebraic; already for $g=2$ this is false!) You can find (effectively) two proofs in [Griffiths and Harris], one using generalized theta functions and the other using Kodaira's embedding theorem.

For us, the implications of this theorem are:
(a) Jacobians of Riemann surfaces of genus g are abelian varieties of dimension g; and
(b) abelian varieties of dimension g have $\frac{g(g+1)}{2}$ moduli.

Since Riemann surfaces of genus $g \geq 2$ have $3 g-3$ moduli, the following is believable:
31.4.2. Proposition. For $g<4$, all abelian g-folds are Jacobians (or products of Jacobians); for $g \geq 4$, "most" of them are not.

For $g \geq 4$, then, we have the problem of characterizing the "Jacobian locus" in the moduli space $\mathfrak{H}^{g} / S p_{2 g}(\mathbb{Z})$, which is the (very difficult) Schottky problem. There are recent results describing this locus in terms of the vanishing of theta functions.

Exercises

(1) What is the smallest value of d for which it is clear that u_{d} has all fibers of the same dimension (and what are they)?
(2) Let $D, E \geq 0$ be effective divisors. Show that $\operatorname{dim}|D|+\operatorname{dim}|E| \leq$ $\operatorname{dim}|D+E|$. [Hint: show that addition of divisors gives a map $|D| \times|E| \rightarrow|D+E|$ with finite fibers.]
(3) A divisor D on M is special if $i(D), \ell(D)>0$. (a) Show that for D special, $\ell(D) \leq \frac{1}{2} \operatorname{deg}(D)+1$. [Hint: First apply (2) to D and $K-$ D to bound $\ell(D)+i(D)$, then use Riemann-Roch.] (b) For $D \in$ $\operatorname{Sym}^{g} M$, show that D is special \Longleftrightarrow the fiber $u_{g}^{-1}\left(u_{g}(D)\right)(=$ $|D|)$ is not just the point D. (c) Conclude that the "special fibers" of u_{g} have dimension in $\left[1, \frac{g}{2}\right]$.
(4) Let M be hyperelliptic of genus g. Use Exercise (3) to completely describe the fibers of u_{g} (a) for $g=2$ and (b) for $g=3$. [Hint for (b): you will need to show that there is no map $f: M \rightarrow \mathbb{P}^{1}$ of degree 3. If there was, and $D:=(f)_{\infty}=[p]+[q]+[r]$, use the degree-2 map $x: M \rightarrow \mathbb{P}^{1}$ to construct g with $(g)_{\infty}=x^{-1}(x(p))$. What functions are in $\mathfrak{L}\left(D^{\prime}\right)$? Apply Exercise (3)(a) to $D^{\prime}:=D+$ $(g)_{\infty}$ to reach a contradiction.]
(5) The automorphism group G of a Riemann surface M is infinite if $g \leq 1$ (why?). By a theorem of Hurwitz, ${ }^{8}$ it is finite (of order $\leq 84(g-1))$ if $g>1$. Here you will just prove an earlier theorem of Schwarz that (for $g>1$) there are no continuous families of automorphisms: suppose otherwise, and let σ_{t} be a family with $\sigma_{0}=\mathrm{id}_{M}$. For t small, σ_{t} preserves the homology classes of the $\left\{\gamma_{i}\right\}$ (but $\sigma_{t} \neq \sigma_{t^{\prime}}$ for $t \neq t^{\prime}$). Show that $\sigma_{t}^{*} \omega_{j}=\omega_{j}$ for $1 \leq j \leq g$, consider $f:=\frac{\omega_{1}}{\omega_{2}}$, and reach a contradiction.

[^7]
[^0]: ${ }^{1}$ To be holomorphic on a closed set means that the function extends to a holomorphic function on a slightly larger open set (which, in this case, would live on the universal cover of M).

[^1]: $\overline{{ }^{2} \text { Recall from Chapter } 21 \text { that } \pi_{j} \text { is the complex } g \text {-vector with } i^{\text {th }} \text { entry } \pi_{j}\left(\omega_{i}\right), ~(n)}$

[^2]: ${ }^{3}$ Here the "product" of ω_{i} and γ_{j} is just the integral $\int_{\gamma_{j}} \omega_{i}$.

[^3]: ${ }^{4}$ Had we started with M itself of dimension >1, its symmetric powers would be singular complex analytic spaces, hence not manifolds. So what happens next is special for $\operatorname{dim}(M)=1$.

[^4]: ${ }^{5}$ We could in fact take these as global coordinates, but this situation won't generalize to M.

[^5]: ${ }^{6}$ The notation $|D|$ is unfortunately standard for both the linear system and the support of D, two completely different concepts!

[^6]: $\overline{7 " G e n e r a l " ~ m a y ~ n o t ~ b e ~ q u i t e ~ e n o u g h ~ — ~} D$ may have to avoid a larger number of subvarieties of $\operatorname{Sym}^{g} M$ then just the ones where two or more p_{j} 's coincide.

[^7]: ${ }^{8}$ If you want a really hard computation, assume $|G|<\infty$ and apply the RiemannHurwitz formula to the quotient $X \rightarrow X / G$ to get this bound. Another bound is given by $2 W$!, where W is the number of Weierstrass points of M (i.e. those points p for which $g[p]$ is special).

