CHAPTER 5

Complex manifolds and algebraic varieties

In Chapters 2-3 we introduced Riemann surfaces and plane algebraic curves, and stated the Normalization Theorem which produces a strong relation between them. Here we will introduce the arbitrary-dimensional generalizations of these objects. While it is true that an algebraic variety of dimension n has a desingularization ${ }^{1}$ which is a complex n-manifold, the converse is false: already there are non-algebraic complex 2-manifolds.

However, it does turn out that any global analytic object (functions or differential forms, for example) on a projective algebraic variety viewed as a complex manifold, is algebraic. This is Serre's "GAGA" (global analytic = global algebraic) principle. For example, global meromorphic functions in this context turn out to be nothing but restrictions to the algebraic variety of rational functions on the ambient projective space (elements of $\left.\mathbb{C}\left(z_{1}, \ldots, z_{n}\right)\right)$.

5.1. Complex n-manifolds

These are the generalization of complex 1-manifolds (or of Riemann surfaces, if we assume compactness) to higher dimension. Once again, we begin with a (Hausdorff, second-countable) topological space X with open cover $\left\{U_{\alpha}\right\}$ and write $U_{\alpha \beta}=U_{\alpha} \cap U_{\beta}$. This is made into a complex n-manifold by the additional data of an analytic atlas on X : that is, a collection of holomorphic coordinates ${ }^{2}$

$$
\underline{z_{\alpha}}: U_{\alpha} \xrightarrow{\simeq} V_{\alpha} \subseteq \mathbb{C}^{n},
$$

[^0]or homeomorphisms between U_{α} and an open set in \mathbb{C}^{n}, such that the transition functions
$$
\Phi_{\beta \alpha}:=\underline{z}_{\beta} \circ \underline{z}^{-1}: V_{\alpha}^{\beta} \rightarrow V_{\beta}^{\alpha}
$$
are biholomorphic.

Here $V_{\alpha}^{\beta}:=\underline{z_{\alpha}}\left(U_{\alpha \beta}\right)$ and $V_{\beta}^{\alpha}:=\underline{z_{\beta}}\left(U_{\alpha \beta}\right)$ are open subsets of \mathbb{C}^{n}, and we need to explain what biholomorphic means. First, a function $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is holomorphic if and only if it looks locally (about each point) like $f(\underline{z})=\sum_{I=\left(i_{1}, \ldots, i_{n}\right)} a_{I} \underline{z}^{I}$ where \underline{z}^{I} means $z_{1}^{i_{1}} z_{2}^{i_{2}} \cdots z_{n}^{i_{n}}$ and $a_{I} \in \mathbb{C}$ are constants. A holomorphic map $\mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is just m of these: $\left(z_{1}, \ldots z_{n}\right)=\underline{z} \mapsto\left(f_{1}(\underline{z}), \ldots, f_{m}(\underline{z})\right)$. (Since these definitions are local, they immediately have meaning when \mathbb{C}^{n} etc. are replaced by open sets.) Finally, "biholomorphic" simply indicates a bijective map ($\Phi_{\beta \alpha}$ is bijective by construction) which is holomorphic in each direction.

To generalize the morphisms of Riemann surfaces introduced in §3.1, we can define a morphism F:X Y of complex manifolds. Here X and Y need not be of the same dimension; for X we keep the above notation and for Y write $\underline{\underline{z}} \boldsymbol{\gamma}: \mathcal{U}_{\gamma} \xrightarrow{\simeq} \mathcal{V}_{\gamma} \subseteq \mathbb{C}^{m}$. A morphism F is then a collection of continuous functions $F_{\alpha}: U_{\alpha} \rightarrow Y$ (agreeing on
the $U_{\alpha \beta}$) such that each composition

$$
\underline{\mathfrak{z} \gamma} \circ F_{\alpha} \circ{\underline{z_{\alpha}}}^{-1}: \underline{z}_{\alpha}\left(F_{\alpha}^{-1}\left(\mathcal{U}_{\gamma} \cap F_{\alpha}\left(U_{\alpha}\right)\right)\right) \rightarrow \underline{\mathfrak{z} \gamma}\left(\mathcal{U}_{\gamma} \cap F_{\alpha}\left(U_{\alpha}\right)\right)
$$

yields a holomorphic map (from a subset of $V_{\alpha} \subseteq \mathbb{C}^{n}$ to a subset of $\mathcal{V}_{\gamma} \subseteq \mathbb{C}^{m}$). If $n=m=1$ then this reproduces Definition 3.1.8. ${ }^{3}$ Moreover, compositions of morphisms are morphisms.

Basic examples of complex manifolds include (besides Riemann surfaces when $n=1$) Cartesian products of Riemann surfaces, complex n-tori

$$
\mathbb{C}^{n} / \mathbb{Z}\left\langle\underline{\lambda_{1}}, \cdots, \underline{\lambda_{2 n}}\right\rangle
$$

(where $\underline{\lambda_{1}}, \ldots, \underline{\lambda_{2 n}}$ are linearly independent over \mathbb{R} in $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$), and projective $\overline{n \text {-space }}{ }^{4}$

$$
\mathbb{P}^{n}:=\frac{\mathbb{C}^{n+1} \backslash\{\underline{0}\}}{\left\langle\left(\xi_{0}, \ldots, \xi_{n}\right) \sim\left(\gamma \xi_{0}, \ldots, \gamma \xi_{n}\right) \forall \gamma \in \mathbb{C}^{*}\right\rangle}
$$

Demonstrating that \mathbb{P}^{n} is a complex n-manifold (as we do in the next section) immediately gives meaning to a "morphism of complex manifolds from a Riemann surface to \mathbb{P}^{n}." This notion is equivalent to (but more intrinsic than) Definition 3.1.11, as we shall see.

5.2. \mathbb{P}^{n} as a complex manifold

\mathbb{P}^{n} is covered by the open sets $U_{i}:=\left\{\xi_{i} \neq 0\right\}$, with local coordinates

$$
\underline{z_{i}}=\left(z_{i 1}, \ldots, z_{i n}\right):=\left(\frac{\xi_{0}}{\tilde{\xi}_{i}}, \ldots, \frac{\widehat{\xi}_{i}}{\tilde{\xi}_{i}}, \ldots, \frac{\xi_{n}}{\tilde{\xi}_{i}}\right): U_{i} \xrightarrow{\cong} \mathbb{C}^{n} .
$$

(Here " i " replaces " α ", $V_{i}=\mathbb{C}^{n}$, and $\widehat{(\cdot)}$ means to omit that term.) We need to check that the transition functions

$$
\Phi_{j i}: V_{i}^{j} \rightarrow V_{j}^{i}
$$

[^1]are holomorphic. Now, $\Phi_{j i}$ tells us how to write the $z_{j}=\left(z_{j 1}, \ldots, z_{j n}\right)$ as functions of the $\underline{z_{i}}=\left(z_{i 1}, \ldots, z_{i n}\right)$ in such a way that
$$
\left(\frac{\xi_{0}}{\xi_{i}}, \ldots, \frac{\widehat{\xi}_{i}}{\xi_{i}}, \ldots, \frac{\xi_{j}}{\xi_{i}}, \ldots, \frac{\xi_{n}}{\xi_{i}}\right) \text { is sent to }\left(\frac{\xi_{0}}{\xi_{j}}, \ldots, \frac{\xi_{i}}{\xi_{j}}, \ldots, \frac{\widehat{\xi}_{j}}{\xi_{j}}, \ldots, \frac{\xi_{n}}{\xi_{j}}\right)
$$
(where for convenience we assume $j>i$). Moreover, $V_{i}^{j} \subset \mathbb{C}^{n}$ is simply the subset where $z_{i j} \neq 0$. So the correct transition function is
$$
\Phi_{j i}\left(z_{i 1}, \ldots, z_{i n}\right)=\left(z_{j 1}\left(z_{i 1}, \ldots, z_{i n}\right), \ldots, z_{j n}\left(z_{i 1}, \ldots, z_{i n}\right)\right)
$$
where
\[

z_{j k}\left(z_{i 1}, ···, z_{i n}\right)=\left\{$$
\begin{array}{cc}
z_{i k} / z_{i j}, & \text { for } k \leq i, k>j \tag{5.2.1}\\
z_{i, k-1} / z_{i j}, & \text { for } i+1<k \leq j \\
1 / z_{i j}, & \text { for } k=i+1
\end{array}
$$.\right.
\]

For $\mathbb{P}^{1}, \underline{z_{i}}$ reduces to $z_{i}(i=0,1)$. More precisely, $z_{0}=\frac{\xi_{1}}{\xi_{0}}$ and $z_{1}=$ $\frac{\xi_{0}}{\xi_{1}}$ are the two local coordinates, while (5.2.1) becomes $z_{1}\left(z_{0}\right)=\frac{1}{z_{0}}$, so that we recover Example 2.2.4. Here is a "schematic picture" of the local coordinates on \mathbb{P}^{1} :

For \mathbb{P}^{2}, we have $\underline{z_{0}}=\left(z_{01}, z_{02}\right)=\left(\frac{\xi_{1}}{\xi_{0}}, \frac{\xi_{2}}{\xi_{0}}\right), \underline{z_{1}}=\left(z_{11}, z_{12}\right)=\left(\frac{\xi_{0}}{\xi_{1}}, \frac{\xi_{2}}{\xi_{1}}\right)$, and $\underline{z_{2}}=\left(z_{21}, z_{22}\right)=\left(\frac{\xi_{0}}{\xi_{2}}, \frac{\xi_{1}}{\xi_{2}}\right)$, with e.g. $\Phi_{20}\left(z_{01}, z_{02}\right)=\left(\frac{1}{z_{02}}, \frac{z_{01}}{z_{02}}\right)$. Again, the local coordinates can be visualized as follows:

So, for instance, the coordinates $\underline{z_{1}}=\left(\frac{\xi_{0}}{\xi_{1}}, \frac{\xi_{2}}{\xi_{1}}\right)$ are defined on the complement U_{1} of the vertical line, and both vanish at $[0: 1: 0]$.
5.2.2. REMARK. Whenever you have a local holomorphic coordinate (system) like $\underline{z_{i}}: U_{i} \rightarrow V_{i} \subseteq \mathbb{C}^{n}$, the inverse mapping $\varphi_{i}=\underline{z}_{i}^{-1}:$ $V_{i} \xlongequal{\leftrightharpoons} U_{i} \subset X$ (or just $V_{i} \hookrightarrow X$) is called a local analytic chart. In case $X=\mathbb{P}^{n}, \varphi_{i}: \mathbb{C}^{n} \hookrightarrow \mathbb{P}^{n}$ is given by

$$
\varphi_{i}\left(z_{i 1}, \ldots, z_{i n}\right)=\left[z_{i 1}: \cdots: z_{i i}: 1: z_{i, i+1}: \cdots: z_{i n}\right],
$$

and one can visualize this as a map from $\mathbb{C}^{n} \hookrightarrow\left(\mathbb{C}^{n+1} \backslash\{\underline{0}\}\right) \rightarrow \mathbb{P}^{n}$. Here are pictures of the image of φ_{0} for \mathbb{P}^{1} and \mathbb{P}^{2} :

The next statement says that the notion of "holomorphic map" from a Riemann surface to projective space (Defn. 3.1.11) is just a special case of "morphism of complex manifolds". It is enough to consider (as we do) the situation where the image is not contained in a coordinate hyperplane, since these are just smaller-dimensional projective spaces (included into \mathbb{P}^{n} by morphisms).
5.2.3. Proposition. Let M be a complex 1-manifold, and consider a continuous mapping $F: M \rightarrow \mathbb{P}^{n}$ with $F(M)$ not contained in any $\left\{\xi_{i}=0\right\}$. The following statements are then equivalent:
(i) F is a morphism of complex manifolds;
(ii) each composition $\left[\xi_{i} \circ F: \xi_{j} \circ F\right]$ is a morphism of complex manifolds to \mathbb{P}^{1} (on the open subset of M where it is well-defined);
(iii) each $\frac{\tilde{\zeta}_{i}}{\xi_{j}} \circ F$ gives a meromorphic function on M.

Proof. First, write $U_{i}:=\left\{\xi_{i} \neq 0\right\} \subset \mathbb{P}^{n}$ as above. For each $\{i, j\}$ (where $i \neq j$), the projections $\pi_{i j}: U_{i} \cup U_{j} \rightarrow \mathbb{P}^{1}$ defined by $\left[\xi_{0}: \cdots: \xi_{n}\right] \mapsto\left[\xi_{i}: \xi_{j}\right]$ are morphisms of complex manifolds. So if $M \xrightarrow{F} \mathbb{P}^{n}$ is one, then $\pi_{i j} \circ F=\left[\xi_{i} \circ F: \xi_{j} \circ F\right]$ is one too, showing $(i) \Longrightarrow(i i)$. Next, $(i i) \Longrightarrow(i i i)$ is Remark 3.1.12. Finally, if all the $\frac{\xi_{j}}{\xi_{i}} \circ F$ give meromorphic functions on all of M, then in particular $\underline{z_{i}} \circ$ $F=\left(\frac{\tilde{\zeta}_{0}}{\zeta_{i}} \circ F, \ldots, \frac{\widehat{\xi_{i}}}{\zeta_{i}} \circ F, \ldots, \frac{\xi_{n}}{\xi_{i}} \circ F\right)$ is holomorphic on $F^{-1}\left(U_{i}\right)$ (or a suitable covering of it by coordinate neighborhoods). These give the local holomorphic representations of F required for a morphism, proving $(i i i) \Longrightarrow(i)$.

We will refine Proposition 5.2.3 in Chapter 7 below.
Whilst we are dwelling on the subject of projective space, I would like to mention (just for \mathbb{P}^{2}) a trick for drawing the real solution sets of homogeneous equations on the page: barycentric coordinates. First draw 3 points $A^{(0)}, A^{(1)}, A^{(2)}$ on a piece of paper:

Think of these as vectors $\underline{A^{(i)}} \in \mathbb{R}^{2}$; it doesn't matter where the origin is. Now, plot $\left[\xi_{0}: \xi_{1}: \xi_{2}\right]$ as

$$
\begin{equation*}
\sum_{i=0}^{2}\left(\frac{\xi_{i}}{\sum_{j=0}^{2} \xi_{j}}\right) \underline{A^{(i)}} \tag{5.2.4}
\end{equation*}
$$

To "draw" an algebraic curve, simply find all the solutions $\left[\xi_{0}: \xi_{1}\right.$: ξ_{2}] with $\xi_{i} \in \mathbb{R}$, and use (5.2.4) to plot them.
5.2.5. EXAMPLE. (i) The line $y=\alpha$ (assume $\alpha \in \mathbb{R}$) projectively completes to $\xi_{2}=\alpha \xi_{0}$. Plotting the points $[1: x: \alpha]$ in this way gives

(ii) The conic $x y=1$ completes to $\xi_{1} \xi_{2}=\left(\xi_{0}\right)^{2}$, and its real barycentric plot is

(iii) The cubic curve $y^{2}=x(x+1)(x-1)$ becomes $\left(\xi_{2}\right)^{2} \xi_{0}=\xi_{1}\left(\xi_{1}+\right.$ $\left.\xi_{0}\right)\left(\xi_{1}-\xi_{0}\right)$ with picture

In fact, this is the precise meaning of the "schematic" real onedimensional pictures of complex algebraic curves which we have
been drawing and will continue to draw - we are plotting the real solutions in barycentric coordinates.

5.3. Affine and projective algebraic varieties

We are going to approach this from a slightly more algebraic angle than, "take the common solution of a bunch of polynomial equations". Start with the commutative ring $S_{n}:=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ of polynomials in n variables.

Let $J \subset S_{n}$ be an ideal. The affine variety associated to J is

$$
V(J):=\left\{\underline{z}=\left(z_{1}, \ldots, z_{n}\right) \mid f(\underline{z})=0 \quad \forall f \in J\right\} \subseteq \mathbb{C}^{n}
$$

which is the vanishing locus of all polynomials in J. By a result in algebra known as Hilbert's basis theorem, any ideal in S_{n} is finitely generated, that is, of the form $\left(f_{1}, \ldots, f_{k}\right)$; consequently $V(J)$ is simply of the form $f_{1}(\underline{z})=\cdots=f_{k}(\underline{z})=0$. However, working in terms of ideals does have a payoff, in the form of the famous "theorem on zeroes" or Nullstellensatz:
5.3.1. Theorem. [D. Hilbert, 1893] If $g \in S_{n}$ vanishes identically on $V(J)$, then for some $m \in \mathbb{N}, g^{m}$ belongs to J.

If $J=(f)$, then this just says "if g vanishes (in \mathbb{C}^{n}) wherever f does, then f divides some power of $g . "$

Next we consider the projective case, writing $S_{n+1}=\mathbb{C}\left[Z_{0}, \ldots, Z_{n}\right]$. Its underlying additive group can be viewed as the direct sum $\oplus_{d} S_{n+1}^{d}$, where S_{n+1}^{d} denotes homogeneous polynomials of degree d in $n+1$ variables. Hence, any polynomial G can be written uniquely as a finite sum of homogeneous terms $\sum_{d} G_{d}$.
5.3.2. Definition. An ideal $I \subset S_{n+1}$ is homogeneous if and only if the condition

$$
G \in I \quad \Longrightarrow \quad G_{d} \in I \quad(\forall d)
$$

is satisfied.

Given a homogeneous ideal $I \subset S_{n+1}$, the associated projective variety is defined by ${ }^{5}$

$$
\bar{V}(I):=\left\{[\underline{Z}]=\left[Z_{0}: \cdots: Z_{n}\right] \mid F(\underline{Z})=0 \forall F \in I\right\} \subseteq \mathbb{P}^{n} .
$$

A version of the Nullstellensatz suited to this case, which is an immediate consequence of Theorem 5.3.1, is:
5.3.3. COROLLARY. Given a homogeneous polynomial g vanishing on all of $\bar{V}(I)$, some power of g belongs to I.
5.3.4. Remark. If F_{1}, \ldots, F_{k} are homogeneous polynomials (of various degrees), then
(i) $I:=\left(F_{1}, \ldots, F_{k}\right)$ is a homogeneous ideal (exercise); and
(ii) $\bar{V}(I)=\left\{F_{1}(\underline{Z})=\cdots=F_{k}(\underline{Z})=0\right\}$.

As in the case of curves, we want to be able to go between the affine and projective settings. To "restrict" a projective variety to the affine world, start with the surjective ring (or algebra) homomorphism

$$
S_{n+1} \rightarrow S_{n}
$$

induced by

$$
F\left(Z_{0}, Z_{1}, \ldots, Z_{n}\right) \mapsto F\left(1, z_{1}, \ldots, z_{n}\right) .
$$

If we write I° for the image of a homogeneous ideal I under this map, then

$$
V\left(I^{\circ}\right)=\bar{V}(I) \cap \mathbb{C}^{n} .
$$

To go the other way, recall the space $\mathcal{P}_{n}^{d}=\oplus_{j=1}^{d} S_{n}^{j}$ of polynomials of degree at most d. We have a homomorphism of abelian groups (or vector spaces)

$$
\mathcal{P}_{n}^{d} \xrightarrow{\theta_{d}} S_{n+1}^{d}
$$

called the homogenization map, which is defined by

$$
f(\underline{z}) \longmapsto\left(Z_{0}\right)^{d} f\left(\underline{Z} / Z_{0}\right) .
$$

[^2]Now, take $J \subset S_{n}$ an ideal. To homogenize J, simply set

$$
\begin{equation*}
\bar{J}:=\left(\left\{\theta_{d}(f) \mid f \in J, \operatorname{deg}(f)=d\right\}\right) \tag{5.3.5}
\end{equation*}
$$

we then evidently have

$$
\bar{V}(\bar{J}) \cap \mathbb{C}^{n}=V(J)
$$

So if $n=3$, then $\bar{V}(\bar{J})$ is adding stuff in the " \mathbb{P}^{2} at infinity" $\left\{Z_{0}=0\right\}$ to complete your affine variety to a projective one, as suggested by the picture:

in which the black points get added in the process of completing the curve.
5.3.6. EXAMPLE. A key example of affine or projective varieties are the hypersurfaces cut out of \mathbb{C}^{n} or \mathbb{P}^{n} by a single equation. Let $F \in S_{n+1}^{d}$ and 6

$$
X=V(F)=\{F(\underline{Z})=0\} \subseteq \mathbb{P}^{n}
$$

the corresponding projective hypersurface of degree d. (Like algebraic curves, these are called linear, quadric, cubic, quartic, quintic, etc. according as $d=1,2,3,4,5, \ldots$.) We will define dimension rigorously below, but X is $(n-1)$-dimensional (and thus of codimension one).

[^3]Now since S_{n} is a unique factorization domain, we can factor

$$
F=\prod_{i=1}^{k} F_{i}^{m_{i}},
$$

uniquely (up to order), where each F_{i} is prime (irreducible). We can then write unambiguously ${ }^{7}$

$$
X=\sum_{i=1}^{k} m_{i} X_{i}
$$

and say X is reduced when all $m_{i}=1$, and irreducible when $k=1$.
5.3.7. REMARK. Given generators $\left\{f_{i}\right\}_{i=1}^{k}\left(f_{i}\right.$ of degree $\left.d_{i}\right)$ for an ideal $J \subset S_{n}$, you may wonder whether $\bar{J}=\left(\theta_{d_{1}}\left(f_{1}\right), \ldots, \theta_{d_{k}}\left(f_{k}\right)\right)$. This is true when J is a principal ideal, making the projective closure of a hypersurface an easy matter. However, it is not true in general: already the twisted cubic curve in \mathbb{P}^{3} provides a counterexample (see the Exercises).

Here is one more bit of terminology: a variety inside another variety is called a subvariety. So for instance one may refer to a projective variety $X \subset \mathbb{P}^{3}$ as a subvariety of \mathbb{P}^{3}. (See the Exercises for a more interesting example.)

Exercises

(1) Show that each projection $\pi_{i j}: U_{i} \cup U_{j} \rightarrow \mathbb{P}^{1}$ described in the proof of Prop. 5.2.3 is a morphism of complex manifolds. [This is a quick one.]
(2) Sketch the real solutions of [the projective closure of]

$$
y^{2}=\prod_{i=1}^{2 g+2}\left(x-a_{i}\right)
$$

in \mathbb{P}^{2}, if $a_{1}<a_{2}<\cdots<a_{2 g+2}$ are real numbers.
(3) Use $S_{n+1}^{d}=\oplus_{k \leq d} S_{n}^{d}$ (as abelian groups) to compute $\sum_{k \leq d}\binom{n+k-1}{n-1}$.
(4) (a) Check Remark 5.3.4(i). (b) Show that homogeneous ideals are generated by finitely many homogeneous polynomials.

[^4](5) Show that the Fermat cubic surface $X \subset \mathbb{P}^{3}$ defined by $\sum_{i=0}^{3} Z_{i}^{3}=$ 0 contains 27 lines. [You can describe the lines parametrically or by equations. Here is one to start you off: the line parametrized (by $\left[T_{0}: T_{1}\right] \in \mathbb{P}^{1}$) via $\left[T_{0}: T_{1}:-T_{0}:-T_{1}\right]$.]
(6) Prove that $\bar{V}(\bar{J})$ is the smallest subvariety of \mathbb{P}^{n} whose intersection with \mathbb{C}^{n} (i.e. $\mathbb{P}^{n} \backslash\left\{Z_{0}=0\right\}$) contains $V(J)$. [Hint: use Theorem 5.3.1.]
(7) The twisted cubic curve $C \subset \mathbb{C}^{3}$ parametrized by $t \mapsto\left(t, t^{2}, t^{3}\right)$ can be defined by the ideal $J=\left(f_{1}, f_{2}\right) \subset S_{3}$ where $f_{1}=z_{2}-z_{1}^{2}$ and $f_{2}=z_{3}-z_{1}^{3}$; that is, $C=V(J)$. Show that the homogeneous ideal $I:=\left(F_{1}, F_{2}\right) \subset S_{4}$ where $F_{1}=\theta_{2}\left(f_{1}\right)=Z_{0} Z_{2}-Z_{1}^{2}$ and $F_{2}=\theta_{3}\left(f_{2}\right)=Z_{0}^{2} Z_{3}-Z_{1}^{3}$ is not the same as \bar{J}. [Hint: consider $f_{3}=z_{2}^{2}-z_{1} z_{3}$; first, is it in J ?]
(8) Introduce the grlex order on monomials $\underline{z}^{\underline{a}}$ by first using total degree, then using lexicographic order to break ties. Let $\operatorname{lt}(f)$ denote the leading (i.e. highest order) term of $f \in S_{n}$ under grlex order, and $\operatorname{lt}(J)$ the ideal generated by leading terms of elements of J. A Groebner basis of J is a generating set $\left\{f_{i}\right\}_{i=1}^{k}$ with the property that $\left(\operatorname{lt}\left(f_{1}\right), \ldots, \operatorname{lt}\left(f_{k}\right)\right)=\operatorname{lt}(J)$; when $\left\{f_{i}\right\}_{i=1}^{k}$ is a Groebner basis, it is a theorem ${ }^{8}$ that $\bar{J}=\left(\theta_{d_{1}}\left(f_{1}\right), \ldots, \theta_{d_{k}}\left(f_{k}\right)\right)$. Assuming this theorem, find a Groebner basis for the ideal J from the previous problem. [Hint: consider, for each $n \in \mathbb{N}$, all monomials $\underline{z}^{\underline{a}}$ with $a_{1}+2 a_{2}+3 a_{3}=n$. Your Groebner basis should have four elements.]
(9) Reduce the basis found in the last problem to three homogeneous polynomials of degree 2 (as generators for \bar{J}). [Alternatively, just use the three polynomials appearing in Example 6.3.9(iii).] Use this to describe the intersections of $\bar{V}(\bar{J})$ and $\bar{V}(I)$ with $\left\{\mathrm{Z}_{0}=0\right\}$ (the " \mathbb{P}^{2} at $\infty^{\prime \prime}$ in \mathbb{P}^{3}).

[^5]
[^0]: 1"Normalization" is no longer the correct term: it refers to a weaker process which can still produce a singular object.
 ${ }^{2}$ As usual, an underline means a vector or tuple of some kind; in this case, $\underline{z_{\alpha}}=$ $\left(z_{\alpha 1}, \ldots, z_{\alpha n}\right)$.

[^1]: ${ }^{3}$ It might be a good idea to glance back at the picture there (for intuition purposes). ${ }^{4}$ In $\S \S 5.1-5.2,\left[\xi_{0}: \cdots: \xi_{n}\right]$ is used for coordinates on \mathbb{P}^{n} instead of $\left[Z_{0}: \cdots: Z_{n}\right]$ (since the back-and-forth between z_{i} and Z_{j} otherwise becomes unreadable).

[^2]: ${ }^{5}$ Technically, one should keep track of multiplicities of irreducible components, rather than just defining $\bar{V}(I)$ as a set. For the most part we will suppress this detail.

[^3]: ${ }^{6}$ Here we really mean $V((F))$, the variety of the ideal (F), but we shorten this to $V(F)$.

[^4]: ${ }^{7}$ but completely heuristically, since as defined above X is just a set.

[^5]: ${ }^{8}$ A proof can be found in [Cox-Little-O'Shea, Ideals, Varieties, and Algorithms, §8.4]. Algorithms for producing Groebner bases are a part of "computational algebraic geometry".

