
CHAPTER 6

More on projective algebraic varieties

We warm up with two examples we can get our hands on imme-
diately: linear varieties and quadric hypersurfaces. Then we turn to
what it means for an algebraic variety to be singular resp. smooth
at a point, and in the latter case introduce its tangent space at that
point (which is a linear variety). This leads to a geometric defini-
tion of dimension for algebraic varieties. We conclude with a short
introduction to plane curve singularities (glossed over in Chapter 2).

6.1. Linear subvarieties of Pn

We start by generalizing the “projectivities” of Chapter 4. Recall
that the projective general linear group is defined as the quotient of
invertible matrices by the scalar action:

PGL(n + 1, C) :=
GL(n + 1, C)〈( α 0

. . .
0 α

)∣∣∣∣ α ∈ C∗
〉 .

This group acts on projective space by the rule

PGL(n + 1, C)×Pn −→ Pn

(M, [Z]) 7−→ [M.Z] =: T(M)[Z].

That is, for each M ∈ PGL(n + 1, C), T(M) gives an automorphism
of Pn as a complex manifold. In fact, the projectivities T(M) give all
automorphisms (generalizing an exercise from Chapter 4), but we
won’t prove this here.
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82 6. MORE ON PROJECTIVE ALGEBRAIC VARIETIES

A system of k linear equations

(6.1.1)


`10ξ0 + · · ·+ `1nξn = 0

...
`k0ξ0 + · · ·+ `knξn = 0


defines a linear subspace V ⊆ Pn. Recalling that the rank of a matrix
is its number of linearly independent row (or equivalently, column)
vectors, the matrix  `10 · · · `1n

... . . . ...
`k0 · · · `kn

 =: L

has rank(L) =: r ≤ k. Defining

codim(V) := r (equivalently, dim(V) = n− r),

we have the

6.1.2. PROPOSITION. (i) All projective linear subvarieties of the same
(co)dimension are projectively equivalent.

(ii) A linear subvariety of Pn of codimension r is isomorphic to Pn−r as
a complex manifold.

PROOF. Given L and V as above, note that if the equations (6.1.1)
are not independent (i.e. k > r), then without changing V or r, we
can eliminate equations (reducing k) until they are (and k = r, i.e. L
has maximal rank). Assume this has been done, so that reordering
Zi’s if necessary,

det

(
`10 ··· `1,k−1
... . . . ...
`k0 ··· `k,k−1

)
6= 0.

Let M be the (n + 1)× (n + 1) matrix whose first k rows are given
by L (a k× (n + 1) matrix) and last n− k + 1 rows by (0 , In−k+1),
where 0 denotes a (n − k + 1) × k matrix of zeroes and Im always
means an m×m identity matrix.

Consider the automorphism T(M) of Pn. By definition of V, [ξ] ∈
V if and only if (matrix multiplication by) L kills ξ. So one should
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view T(M) as taking V to the subspace V0 = {ξ0 = · · · = ξk−1 = 0},
which proves (i) since V was arbitrary. This also proves (ii) since V0 is
evidently a Pn−k (with homogeneous coordinates [ξk : · · · : ξn]). �

A linear subvariety of codimension 1 is called a hyperplane.

6.2. Quadric hypersurfaces

Recall that a (projective) hypersurface is a subvariety X ⊂ Pn cut
out by a single homogeneous equation F(Z) = 0. We are interested
in the case where F ∈ S2

n+1 (degree 2), so that X is a quadric. The
polynomial can be written

F(Z) = tZBZ =
(

Z0 · · · Zn

) b00 · · · b0n
... . . . ...

bn0 · · · bnn


 Z0

...
Zn


with B symmetric. Under a linear change of projective coordinates Z0

...
Zn

 = M

 Y0
...

Yn

 (M ∈ GL(n + 1, C)),

we find

F(Z) =
(

Y0 · · · Yn

)
tMBM

 Y0
...

Yn

 =: G(Y),

where (as in Chapter 4) tMBM is said to be cogredient to B.

6.2.1. LEMMA. [SYLVESTER’S THEOREM /C] Any given symmetric
complex (n + 1) × (n + 1) matrix B is cogredient to exactly one of the
matrices

Mk =


1

. . .
1

0
. . .

0

 ,

where k is the number of 1’s.
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6.2.2. COROLLARY. A given quadric hypersurface in Pn is projectively
equivalent to (or transformable by a linear change of coordinates into) ex-
actly one of the quadrics

Qk =
{

∑k−1
j=0 Y2

j = 0
}

(k = 1, . . . , n + 1).

Note that Q1 = {Y2
0 = 0} is a double hyperplane, Q2 = {Y2

0 +

Y2
1 = 0} is a union of two hyperplanes (each ∼= Pn−1), and Qk for

k ≥ 3 is irreducible (equation does not factor). You’ll investigate
these a tiny bit further in one of the exercises.

6.3. Singularities, tangent planes, and dimension

We’ll need the Euler formula from §2.1, so let’s prove it first:

6.3.1. LEMMA. [EULER’S FORMULA]

F ∈ Sd
n+1 =⇒ ∑n

i=0 Zi
∂F
∂Zi

= d.F.

PROOF. It suffices to check this on monomials (F =)Zd0
0 · · · Z

dn
n ,

∑ di = d. We have ∑i Zi
∂

∂Zi
(Zd0

0 · · · Z
dn
n ) = ∑i Zi

di
Zi
(Zd0

0 · · · Z
dn
n ) =

(∑i di)Zd0
0 · · · Z

dn
n = dZd0

0 · · · Z
dn
n . �

Now, the definition of smoothness for hypersurfaces is similar to
what we have learned for curves; the general case of varieties cut
out by more than one equation is trickier. So we’ll start, then, with
an affine hypersurface

V = V( f ) ⊂ Cn,

and a point p ∈ V.

6.3.2. DEFINITION. (i) V is smooth at p ⇐⇒ ∂ f
∂zj

(p) 6= 0 for some

j ∈ {1, . . . , n}. Otherwise, p is a singular point (or singularity) of V.
(ii) If V is smooth at all of its points, V is smooth. Otherwise, V is

singular.
(iii) If V is smooth at p, define the tangent plane

TpV :=
{
(z1(p) + α1, . . . , zn(p) + αn)

∣∣ ∑n
i=1 αi

∂ f
∂zi

(p) = 0
}
⊂ Cn.

(Here the αi ∈ C.)
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So one can think of TpV as a copy of Cn−1 with origin at p and
coordinates {αi}. It’s also worth noting the formal correspondence
between “tangent vectors” (points in TpV) and differential operators
“at p”, namely ∑i αi

∂
∂zi

. This is not misleading at all, and in fact the
intrinsic construction of tangent planes (for complex or more gener-
ally differentiable manifolds) uses local differential operators.

As for singularities, i.e. points where f (p) = fz1(p) = · · · =
fzn(p) = 0, we saw some examples for curves in Chapter 2. Here
is one more: y2 = x3 − x2 is singular at (0, 0) since both partials of
y2 − x3 + x2 vanish there. On the other hand, y2 = x3 − x is smooth
because this equation together with 0 = ∂

∂x (y
2 − x3 + x) = −3x2 + 1

and 0 = ∂
∂y (y

2 − x3 + x) = 2y admit no common solution. This is

easy to see: the points ( 1√
3
, 0) and (−1√

3
, 0) where both partials vanish,

do not lie on the curve.
Next, consider a projective hypersurface

V = V̄(F) ⊂ Pn,

where F is homogeneous and P ∈ V.

6.3.3. DEFINITION. (i) V is smooth at P ⇐⇒ ∂F
∂Zj

(P) 6= 0 for some

j ∈ {0, . . . , n}. Otherwise, P is a singular point (or singularity) of V.
(ii) If V is smooth at all of its points, V is smooth. Otherwise, V is

singular.
(iii) If V is smooth at P, define the tangent plane (∼= Pn−1)

TPV :=
{
[Z0(P) + α0 : . . . : Zn(P) + αn]

∣∣ ∑n
i=0 αi

∂F
∂Zi

(P) = 0
}
⊂ Pn.

Now a priori, the definition of a singular point is one at which
F(P) = FZ0(P) = · · · = FZn(P) = 0; but by the Euler formula,

(6.3.4) ∑i Zi(q) ∂F
∂Zi

(P) = deg(F) · F(P)

and so it suffices to check FZ0(P) = · · · = FZn(P) = 0. In fact, (6.3.4)
also implies (in the projective case only!) the simplification

(6.3.5) TPV =
{
[α0 : · · · : αn]

∣∣ ∑i αi
∂F
∂Zi

(P) = 0
}
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Note that (6.3.5) is really just the solution set of t∂F(P) · α = 0, as in
Chapter 4 (but now in Pn rather than P2).

As you might expect, the notions of tangent plane in affine and
projective cases “agree”, in the sense that – at a point on an affine
hypersurface – the tangent plane of the projective completion is the
completion of the tangent plane:

6.3.6. PROPOSITION. TpV(F(1, z1, . . . , zn)) = T[1:p]V̄(F)∩Cn, where
(P =)[1 : p] means [1 : z1(p) : · · · : zn(p)].

PROOF. Given q = (z1(q), . . . , zn(q)) ∈ Cn. Writing f (z) = F(1, z)
and Q = [1 : q], we want to show

(6.3.7) q ∈ TpV( f ) ⇐⇒ Q ∈ TPV̄(F).

The left-hand (affine) condition is, writing zi(q) = zi(p) + αi in Defi-
nition 6.3.2(iii),

n

∑
i=1

(zi(q)− zi(p))
∂ f
∂zi

(p) = 0.

This is really
n

∑
i=1

(Zi(Q)− Zi(P))
∂F
∂Zi

(P) = 0,

which by Euler becomes
n

∑
i=1

Zi(Q) · ∂F
∂Zi

(P) − deg(F) · F(P) + 1 · ∂F
∂Z0

(P) = 0.

Since F(P) = 0, we get

1 · ∂F
∂Z0

(P) +
n

∑
i=1

Zi(Q) · ∂F
∂Zi

(P) = 0,

which is exactly the right-hand (projective) condition of (6.3.7). �

Now let’s have a look at singularities and smoothness in the gen-
eral projective case. The definition is complicated, but after this
chapter we won’t use it much. Let

V = V̄(F1, . . . , Fk) ⊆ Pn,

and p be a point on V.
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6.3.8. DEFINITION. (i) V is smooth at p if and only if there ex-
ists a neighborhood W ⊂ Pn of p and sub-index set {i1, . . . , ic} ⊆
{1, . . . , k} such that1

(a) V ∩W = V̄(Fi1 , . . . , Fic) ∩W, and

(b) rank


∂Fi1
∂Z0

(p) · · · ∂Fi1
∂Zn

(p)
... . . . ...

∂Fic
∂Z0

(p) · · · ∂Fic
∂Zn

(p)

 = c.

We say V has codimension c (or dimension n− c) at p.
(ii) If V is smooth at each point p ∈ V, then V is smooth (other-

wise, V is singular).
(iii) If V has the same (co)dimension at each smooth point p ∈ V,

then V is equidimensional. If moreover that codimension is c, we just
say V is a variety of codimension c (dimension n− c).2

(iv) The tangent plane TpV ⊂ Pn to V at a smooth point p is the
solution set of L.p = 0, where

L =


∂F1
∂Z0

(p) · · · ∂F1
∂Zn

(p)
... . . . ...

∂Fk
∂Z0

(p) · · · ∂Fk
∂Zn

(p)

 .

In Definition 6.3.8(i), condition (a) says that locally about p, once
you set Fi1(Z) = · · · = Fic(Z) = 0, the remaining equations are
redundant; and roughly speaking, the condition (b) on rank says
that no more (none of the Fi`) are redundant. In the terminology
of §6.1, TpV is a linear subvariety, and it follows from condition
6.3.8(i)(b) that its codimension is c. That is, we have really just de-
fined the (co)dimension of a variety V at a smooth point p, to be the
(co)dimension of TpV — something we already knew how to define.

Finally, the “neighborhood” W in the definition is an analytic
open set containing p (such as a “ball”), but the definition would also

1The matrices in this definition assume a particular representative
(Z0(p), . . . , Zn(p)) in Cn+1 of the projective coordinate [Z0(p) : · · · : Zn(p)].
It doesn’t matter which one you take, as long as you are consistent.
2Note that the dimension of V at a singular point is not defined, so the definition of
a m-dimensional variety must be “one that is of dimension m at all smooth points”.
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work if we only permitted “algebraic” open sets defined by comple-
ments of (other) subvarieties,3 known as Zariski open sets. In general,
if you want to view an algebraic variety as a complex analytic space
(or manifold, if it is smooth), then you must use analytic open sets;
on the other hand, the Zariski open sets introduce a different topol-
ogy on V or Pn, which is coarser (and no longer Hausdorff) but has
the advantage of being algebraic. We need both. In brief, when we
study varieties analytically, we use the analytic topology; when we
want to make heavy use of the correspondence between varieties
and ideals in commutative rings, we use the Zariski topology.

6.3.9. EXAMPLE. (i) Let V be the affine variety {z2
1 + z2

2 + z2
3 =

0} ⊂ C3. The partial derivatives ∂
∂zi

(∑j z2
j ) = 2zi all vanish at p =

(0, 0, 0) and so V is singular there:

p

(ii) Now for a nasty one. Let V ⊂ P3 be defined by

{
Z1Z3 = 0
Z2Z3 = 0

}
,

and take p = [1 : 0 : 0 : 0], q = [1 : 0 : 0 : 1], r = [1 : 1 : 0 : 0]:

r

q

p

3This is exactly how Example 6.3.9(iii) is started below.
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Locally about r, Z1 6= 0 and so having set Z1Z3 = 0 (i.e. Z3 = 0), the
second equation Z2Z3 = 0 is redundant. So the relevant matrix from
6.3.5(i)(b) is

(
∂

∂Z0
(Z1Z3)

∂
∂Z1

(Z1Z3)
∂

∂Z2
(Z1Z3)

∂
∂Z3

(Z1Z3)
)∣∣∣

r
=(

0 Z3 0 Z1

)
|r =

(
0 0 0 1

)
, which has rank 1, proving

that V has codimension 1 (dimension 2) at r. Locally about q, Z3 6= 0
and so the equations are effectively Z1 = 0 and Z2 = 0, neither of
which is redundant. The matrix in 6.3.5(i)(b) is now

(
0 Z3 0 Z1
0 0 Z3 Z2

)∣∣∣
q
=(

0 1 0 0
0 0 1 0

)
, which does have rank 2, confirming that V has codimen-

sion 2 at q. So V is not equidimensional. Finally, at p neither equa-
tion is redundant but the matrix 6.3.8(i)(b) is

(
0 0 0 0
0 0 0 0

)
, meaning V is

singular at p.

(iii) Finally, consider the variety C ⊂ P3 defined by the three
equations 

Z0Z3 − Z1Z2 = 0 (I)
Z2

1 − Z0Z2 = 0 (II)
Z2

2 − Z1Z3 = 0 (III)

 ,

and the covering Ui := {Zi 6= 0} of P3. In U0, we can divide by

Z0, so that (II) becomes Z2 =
Z2

1
Z0

. (You may already recognize C as
the twisted cubic curve from the Chapter 5 exercises.) Together with
(I), this gives Z2

2 = Z2Z2 = Z1Z2
Z1
Z0

= Z0Z3
Z1
Z0

= Z1Z3. Consquently,
(III) is redundant on U0. Now, for any point in U0∩C, you can check
that the matrix in 6.3.5(i)(b) has rank 2, showing that C is smooth of
dimension 1 at all of those points. To finish, and show that C is a
1-dimensional smooth variety, carry out a similar analysis in each of
U1, U2, and U3 (exercise).

6.3.10. REMARK. For an affine variety defined by a prime ideal
I ⊂ Sn = C[z1, . . . , zn], one can consider the coordinate ring R =

Sn/I and its fraction field F (see Chapter 9). The Krull dimension
of R (the maximum length of a chain of prime ideals) and transcen-
dence degree of F/C (which agrees with the former by Noether nor-
malization) are algebraic definitions of dimension that agree with
our geometric one, and also work for fields other than C.
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Somewhat unsurprisingly, a variety of dimension 1 is called a
curve, of dimension 2 a surface, and of dimension d ≥ 3 a d-fold.
So-called “Calabi-Yau threefolds”, such as quintic hypersurfaces in
P4, play a central role in mathematical string theory.

6.4. Singularities of plane curves

Consider a curve

C = {F(Z) = 0} ⊂ P2

defined by a homogeneous polynomial F ∈ Sd
3 (i.e., of degree 3 in

Z0, Z1, Z2). A point p ∈ C is a singularity if and only if FZ0(p) =

FZ1(p) = FZ2(p) = 0, and (moving C by a projectivity if necessary)
we may assume that p = [1 : 0 : 0]. To locally analyze C at p, we can
pass to affine coordinates x = Z1

Z0
, y = Z2

Z0
and replace F by

f (x, y) = F(1, x, y) =
d

∑
m=k

fm(x, y),

where fm ∈ Sm
2 for each m, and fk 6= 0. Now 0 = fx(p) = fy(p) =

f (p) (p = (0, 0)) translates to 0 = f1 = f0, so that k ≥ 2. We say that
p is a k-tuple point of C, or a singularity of order k.

So far, we have not defined tangent planes at singular points. In-
deed, this can really only be done for curves in general. To decide
what the tangent lines to C at 0 should be, we think of [x : y] as
homogenous coordinates on the P1 of lines through (0, 0) = p. The
lowest-order homogeneous term fk of f defines a 0-dimensional va-
riety τp(C) := { fk(x, y) = 0} in this P1. For each [x0 : y0] ∈ τp(C),
one should think of y0

x0
as the slope of a line tangent to some “local

irreducible component”4 of the curve C at p.

6.4.1. DEFINITION. The tangent lines to a curve C at a singularity
p are the lines through p corresponding to points of τp(C).

Now, fk(x, y) = 0 has k solutions counted with multplicity. If
these are all distinct, i.e. if τp(C) is reduced, then we say p is an

4this will be made precise when we do local normalization
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ordinary k-tuple point. The most geometric way to think of this is
that C has k distinct tangent lines at p.

Any line through a k-tuple point p other than one of C’s tangent
lines there, meets C with multiplicity k at p: if L is given paramet-
rically by t 7→ (at, bt) ( fk(a, b) 6= 0) then the intersection multiplic-
ity is computed as in Chapter 2 by taking the order of f (at, bt) =

tk fk(a, b) + · · · at t = 0.

6.4.2. REMARK. Given a polynomial f (x, y) = ∑(a,b)∈Z2
≥0

αabxayb

it can be useful (for various purposes) to plot the finitely many (a, b)
with αab 6= 0. If you do this when (0, 0) is a k-tuple point and f has
degree d, then these lie in the shaded region

k d

k

d

This may be useful for one of the exercises below.

There is more to singularities, it turns out, than their order or
even the tangent line configuration reflected by τp(C). A local an-
alytic classification of so-called simple5 singularities of curves has
been carried out. For the purposes of this classification, if C, C′ are
two curves through p = (0, 0), their singularities at p are consid-
ered equivalent if there are small neighborhoods U, U′ of (0, 0) in C2

and a biholomorphism U '→ U′ carrying p to p and C to C′. The
different classes of simple singularities carry “A-D-E” labels, which
reflect a relation to other classifications in mathematics (simple Lie
algebras/Dynkin diagrams, rational surface singularities, etc.)

5cf. [Barth, Hulek, Peters, and van de Ven, “Compact complex surfaces”, Springer,
2004] for the definition. Simple singularities encompass all double (2-tuple) points
and some triple (3-tuple) points, and nothing of higher order.
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The results are that double points are all equivalent to one of

An: x2 + yn+1 = 0 (n ≥ 1),

and (simple) triple points to one of

Dn: y(x2 + yn−2) = 0 (n ≥ 4),
E6: x3 + y4 = 0,
E7: x(x2 + y3) = 0,
E8: x3 + y5 = 0.

The ODP’s (ordinary double points: two distinct tangents) are all
of type A1, as all An≥2 have only one tangent; amongst the latter,
“cusps” are the singularities of type A2.6 OTP’s (ordinary triple
points) are all of type D4; we note that the tangent lines to y(x2 +

y2) = 0 have slopes 0, i,−i. All Dn≥5 have two distinct tangents
(one with “mutliplicity 2”) and the E6,7,8 each have one tangent (of
“multiplicity 3”).

Exercises
(1) (i) Prove that a quadric hypersurface in Pn defined by a symmet-

ric bilinear form B is smooth if and only if det(B) 6= 0.
(ii) Cor. 6.2.2 associates a number k to each projective quadric hy-
persurface in Pn. Show that any two are projectively equivalent
if and only if they have the same value of k. [This is easy.]

(2) Show that [the closure in P2 of] y2 = 4x3 + ax + b is smooth
unless a3 + 27b2 = 0.

(3) Find the tangent plane to the complex surface 2x4 + y4 + z4 −
4xyz = 0 (in C3) at the point p = (1, 1, 1).

(4) Finish the proof in Example 6.3.9(iii) that C is a smooth curve.
(5) What form does a degree k projective algebraic curve (in P2) take

if it has a singularity of order k?
(6) Analyze the singularity of C = {(x2 + y2)2 + 3x2y− y3 = 0} ⊆

C2 at the origin. (What is its order, and type?)
(7) For which values of µ are the algebraic curves F(X, Y, Z) = 0

in P2 singular (in (a) and (b) below)? Attempt a sketch of each

6Refer back to Chapter 2 for a few pictures (cusps, ODP, OTP).
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of the singular curves, saying where the singularities are located
and what type they are.
(a) F(X, Y, Z) = X3 + Y3 + Z3 + µ(X + Y + Z)3,
(b) F(X, Y, Z) = X3 + Y3 + Z3 + 3µXYZ.

(8) Show that a smooth quadric surface in P3 contains two infinite
families of lines. Starting with the right smooth quadric (to which
all others are projectively equivalent), which may not be the one
from Cor. 6.2.2, is the key step. [Hint: how would you map P1 ×
P1 into P3? Doing it this way gives you a bonus result...]

(9) Calculate the number of singularities on the hypersurface in Pn

defined by ∑n
i=0 Zn+1

i = (n + 1)∏n
i=0 Zi. (These are all nodes.)

[Hint: set Zi
∂

∂Zi
of the equation to zero for each i.]


