
CHAPTER 7

Smooth varieties as complex manifolds

This Chapter starts the long slog toward a proof of part (A) of the
Normalization Theorem 3.2.1. After introducing a bit of the theory of
several complex variables, we’ll use the holomorphic implicit func-
tion theorem to put a complex manifold structure on any smooth
irreducible (affine or projective) algebraic variety:

7.0.1. THEOREM. A smooth irreducible algebraic curve C ⊂ Pn “is”
a Riemann surface. (More precisely, there exists a Riemann surface M and
an injective morphism of complex manifolds σ : M ↪→ P2 with C as its
image.)

This is, of course, the “smooth” case of Thm. 3.2.1(A). As for
going the other way, from Riemann surfaces to algebraic curves, here
is a statement which is different in character from 3.2.1(B):

7.0.2. THEOREM. A Riemann surface M with n + 1 linearly indepen-
dent meromorphic functions f0, . . . , fn ∈ K(M), yields an algebraic curve
in Pn not contained in any proper linear subvariety.

We won’t prove this in full — just the existence of a morphism
M → Pn of complex manifolds which is nondegenerate, i.e. whose
image is not contained in any Pn−1. Proving that the image is de-
scribed by algebraic equations (hence yields an algebraic curve) is
harder.

7.1. Background from several complex variables

LetOn (or C{z1, . . . , zn}) denote the ring of convergent power series
∑I aIzI in z1, . . . , zn, or equivalently, holomorphic functions defined
on some neighborhood of 0 ∈ Cn (cf. §5.1).
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96 7. SMOOTH VARIETIES AS COMPLEX MANIFOLDS

7.1.1. PROPOSITION. [W. OSGOOD, 1900] Let f be a function on an
open neighborhood of 0 ∈ Cn which is holomorphic in each zi as the other
{zj}j 6=i are held fixed; that is, ∂ f

∂zi
= 0 (∀i). Then f is in fact a holomorphic

function (and so gives an element of On).

PROOF. We will only give the proof for n = 2. Since f is holo-
morphic in z2, we have

f (z1, z2) =
1

2π
√
−1

˛
f (z1, ζ2)

ζ2 − z2
dζ2;

using the holomorphicity in z1, this

=
1

(2π
√
−1)2

˛ ˛
f (ζ1, ζ2)

(ζ1 − z1)(ζ2 − z2)
dζ1dζ2

=
1

(2π
√
−1)2

˛ ˛
f (ζ1, ζ2)dζ1dζ2

ζ1ζ2

(
1− z1

ζ1

) (
1− z2

ζ2

) .

Now using the power-series expansion

1
1− zi

ζi

= ∑
k≥0

(
zi

ζi

)k
,

whose uniform convergence allows us to swap integration and sum-
mation, we find

f (z1, z2) = ∑
k1,k2≥0

(
1

(2π
√
−1)2

˛ ˛
f (ζ1, ζ2)dζ1dζ2

ζk1+1
1 ζk2+1

2

)
zk1

1 zk2
2 .

�

In order to put a complex manifold structure on a smooth va-
riety, we will need a way to parametrize zero-loci of holomorphic
functions. This is given by the holomorphic implicit function theorem
which here I will just state and prove in the two variable case.

7.1.2. PROPOSITION. Let f ∈ O2 with f (0, 0) = 0, ∂ f
∂z1

(0, 0) 6= 0.
Then there exists w ∈ O1 such that in a neighborhood of (0, 0) in C2,

f (z1, z2) = 0 ⇐⇒ z1 = w(z2).

The upshot of this is that z2 gives a local holomorphic coordinate
on { f (z1, z2) = 0}.
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PROOF. We will assume the C∞ implicit function theorem, and
just check that the w it yields is holomorphic:

0 =
∂

∂z2
f (w(z2), z2)

=
∂ f
∂z2

(w(z2), z2) +
∂ f
∂z1

(w(z2), z2) ·
∂w
∂z2

+
∂ f
∂z1

(w(z2), z2) ·
∂w
∂z2

.

Now since f ∈ O2, ∂ f
∂z1

= ∂ f
∂z2

= 0; moreover, by assumption ∂ f
∂z1
6= 0

locally. So we find that ∂w
∂z2

= 0, so that w ∈ O1. �

Here is a visual explanation of why the nonvanishing condition
on ∂ f /∂z1 matters:

f f
z

1z1

(0)=0 (0)=0
z

z

z

z

1

2

1

2

In the left-hand picture, you can write z1 as a function of z2 (as de-
sired); on the right-hand side, you cannot.

7.2. Smooth normalization

The more general statement which implies Theorem 7.0.1 is:

7.2.1. THEOREM. Given

• a closed connected subset Y of a compact complex n-manifold X;
• a system of open neighborhoods {Wα ⊂ X} covering Y (with local holo-

morphic coordinates zα = (zα1, . . . , zαn));
• holomorphic functions fα1, . . . , fα` ∈ O(Wα) (for each α) such that1

Y ∩Wα = V({ fαj}j=1,...,`) ∩Wα; and (also for each α)

• rank

({
∂ fαj/∂zαk

}
j=1,...,`
k=1,...,n

)
= ` [the “Jacobian condition”].

Then Y is a compact complex (n− `)-manifold.

1this condition makes Y into an “analytic subvariety” of X; here V( f1, . . . , f`)
means the vanishing locus f1 = · · · = f` = 0, just as in the algebraic setting.
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We say that Y is a codimension-` complex submanifold of X. In
fact, Theorem 7.2.1 immediately gives:

7.2.2. COROLLARY. Any smooth irreducible projective algebraic vari-
ety Y ⊂ Pn of dimension d is a compact complex d-manifold.

PROOF. Put X = Pn and ` = n− d. That Y is smooth of dimen-
sion d (Defn. 6.3.8) implies the Jacobian condition required in Thm.
7.2.1. �

PROOF OF THEOREM 7.2.1. Refining the covering if necessary, we
can arrange to have

(7.2.3) det

({
∂ fαj

∂zαk

}
1≤j,k≤`

)
6= 0.

Write “zα I” for (zα1, . . . , zα`) and “zα I I” for (zα,`+1, . . . , zαn), so that
zα =

(
zα I , zα I I

)
. A schematic picture:

Y

z

zβΙΙ

βΙ

z

z

αΙ

αΙΙ

W

W
β

α

By the condition (7.2.3), and the general holomorphic implicit func-
tion theorem (see the Exercises), we have holomorphic functions {wα}
(mapping from open subsets of Cn−` to C`) such that

Y ∩Wα =
{

zα I = wα

(
zα I I

)}
for each α. Hence, the

{
zα I I

}
give local coordinates on the {Y ∩Wα},

which constitute an open cover of Y.
Consider the transition functions for X

Φαβ : zβ(Wαβ)
'→ zα(Wαβ)(

zβ I
, zβ I I

)
7→
(

φI

(
zβ I

, zβ I I

)
, φI I

(
zβ I

, zβ I I

))
=:
(
zα I , zα I I

)
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corresponding to change of coordinates on Wαβ. Clearly the func-
tions describing change of coordinates on Y ∩Wαβ are then

ΦY
αβ : zβ I I

7→ φI I

(
wβ

(
zβ I I

)
, zβ I I

)
=: zα I I .

This is 1-to-1 because Φαβ is, and holomorphic because φI I and wβ

are. So we have the data of an analytic atlas on Y. �

7.3. Nondegenerate morphisms

The statement related to Theorem 7.0.2 which we shall prove is:

7.3.1. PROPOSITION. Given a Riemann surface M, the following data
are equivalent:

(a) n + 1 linearly independent meromorphic functions fi ∈ K(M);
(b) a nondegenerate holomorphic map (morphism of complex manifolds)

σ : M→ Pn.

We will need the notion of a meromorphic function on a complex
manifold of any dimension.

7.3.2. DEFINITION. A meromorphic function F ∈ K(X) (on a
complex manifold X) is a collection {(Uα, gα, hα)} such that
• {Uα} is an open cover of X;
• gα, hα ∈ O(Uα) (they are holomorphic functions); and
• gαhβ = gβhα on Uαβ.

We write “F = gα

hα
” on Uα.2

7.3.3. REMARK. For dim(X) = 1, this coincides with the earlier
Definition 3.1.1 (via g/h); by Prop. 3.1.10 meromorphic functions
on Riemann surfaces yield morphisms X → P1. But this does not
generalize: if dim(X) > 1, a meromorphic function on X need not
even yield a well-defined mapping X → P1.

7.3.4. EXAMPLE. Consider X = C2 with complex coordinates x, y.
Then F := x/y (one Uα = X; g = x, h = y) defines a meromorphic

2The third condition says that gα

hα
=

gβ

hβ
on overlaps — at least, where the quotients

are defined! (see Remark 7.3.3)
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function, which is not well-defined (as a mapping to P1) at (0, 0).

??? x

y

1
2

=2

=1

=

C
2

The notion of “blowing up” in algebraic geometry is motivated (in
part) by the desire to remove such indeterminacies. In this example,
the idea would be to replace the origin in X = C2 by the P1 of lines
through the origin, yielding a new space X̃ (mapping down onto
X) on which the meromorphic function becomes well-defined as a
morphism.

7.3.5. EXAMPLE. The meromorphic functions on Pn and its smooth
subvarieties (viewed as complex manifolds) are the rational functions
F = P(Z)

Q(Z) for P, Q ∈ Sd
n+1. For instance, the affine coordinates

zi = Zi
Z0

are meromorphic functions (and more generally, zji = Zi
Zj

is one).
Here is how to see at least that “rational functions are meromor-

phic” in the sense of Definition 7.3.2. (That meromorphic functions
are rational is more nontrivial.) In Uj = {Zj 6= 0}, set

gj(zj) := P(zj0, . . . , 1
jth

entry

, . . . , zjn) = P
(
Z/Zj

)
=

1
Zd

j
P(Z)

hj(zj) := Q(zj0, . . . , 1
jth

entry

, . . . , zjn) =
1

Zd
j

Q(Z);

then
gjhi =

1
Zd

j

1
Zd

i
P(Z)Q(Z) = gihj.

7.3.6. EXAMPLE. Consider a holomorphic map f : C → X from
a Riemann surface to a complex manifold, and let F ∈ K(X) be
given by {(gα, hα, Uα)}. Assume that f (C)|Uα ∩ {hα = 0} is a finite
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point set, and put Wα := f−1(Uα), Gα := gα ◦ f , Hα := hα ◦ f . Then
f ∗F := {(Gα, Hα, Wα)} (or rather, G/H) belongs to K(C).

The last two examples will now be used in the

PROOF OF PROPOSITION 7.3.1. The first issue is how we get from
n + 1 meromorphic functions to a morphism to Pn. The set of points
in M which cause a problem is

∆ := {q ∈ M | fi(q) = 0 for all i} ∪ {q ∈ M | fi(q) = ∞ for some i}.

Define
f : (M\∆)→ Pn

by
p 7−→ [ f0(p) : · · · : fn(p)].

Near q ∈ ∆ let z be a local holomorphic coordinate with z(q) = 0,
then write fi(z) = zνq( fi)hi(z) (where hi are local holomorphic func-
tions not vanishing at q), and put ν := mini∈{0,...,n}{νq( fi)}. For
z 6= 0,

f (z) =
[
z−ν f0(z) : · · · : z−ν fn(z)

]
;

none of the entries in this blows up locally, and at least one does not
vanish at z = 0 (i.e. at q). Hence, f extends to all of M, and it is
evident that this extension is still holomorphic as a map to P1.

Next, given a morphism f : M → Pn, we want to product an
(n+ 1)-tuple of meromorphic functions. Referring to Examples 7.3.5
(for zi) and 7.3.6 (for f ∗), simply take fi := f ∗zi and you’re done.

Finally, to see that f is degenerate iff the { fi} are linearly de-
pendent, consider the correspondence between nonzero vectors v ∈
Cn+1 (up to scale) and hyperplanes in Pn, by taking Pn−1

v to be the
projectification of (Cn+1)⊥v. Degeneracy of f occurs iff f (M) ⊂
Pn−1

v for some v, which is to say ( f0(p), . . . , fn(p)) ⊥ v for all p ∈ M.
But this just reads ∑ vi fi(p) = 0 (∀p), which is a nontrivial linear
relation. �
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We give two examples of nondegenerate projective embeddings
of Riemann surfaces (the first is actually a series of examples). For
these cases we actually give algebraic equations for the image.

7.3.7. EXAMPLE. The so-called rational canonical curves are the im-
ages of the nondegenerate morphisms

f : P1 ↪→ Pn

given, for each n ∈N, by

[Z0 : Z1] 7→ [Zn
0 : Zn−1

0 Z1 : · · · : Zn
1 ].

(In affine terms, one can think of this as z 7→ [1 : z : . . . : zn], with
∞ 7→ [0 : · · · : 0 : 1].)

Let’s see what this looks like for the first few values of n:

• for n = 1, f sends [Z0 : Z1] 7→ [Z0 : Z1] and so is just the identity
map.
• for n = 2, we have [Z0 : Z1] 7→ [Z2

0 : Z0Z1 : Z2
1 ]. If we write

[Y0 : Y1 : Y2] for the homogeneous coordinates on P2, then the
image is the conic {Y2

1 −Y0Y2 = 0} ⊂ P2.
• for n = 3, [Z0 : Z1] 7→ [Z3

0 : Z2
0Z1 : Z0Z2

1 : Z3
1 ](= [Y0 : Y1 : Y2 : Y3])

has image V := V(Y0Y3 −Y1Y2, Y2
1 −Y0Y2, Y2

2 −Y1Y3) ⊂ P3.

By Exercise 4 from Chapter 6 you know that V is smooth.

7.3.8. EXAMPLE. Let M = C/Λ (Λ ⊂ C a lattice) be a complex 1-
torus. We want to demonstrate that there is a (nondegenerate) mor-
phism from M to P2 with a cubic curve as image. Note that this will
present M as the normalization of such a cubic curve:

M

C
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Some of the steps will be exercises.
First, there exists a unique meromorphic function ℘ ∈ K(C) sat-

isfying

• ℘(u + λ) = ℘(u) for every λ ∈ Λ and u ∈ C

• ℘(u) = u−2 + h(u), where h ∈ K(C) is holomorphic in a neigh-
borhood of 0, has all its poles in Λ\{0}, and h(0) = 0.

Existence is an exercise. Uniqueness is easy: if Q were another such
function, ℘−Q = (℘− u−2)− (Q− u−2) has no pole at 0 and is Λ-
periodic, hence has no poles in Λ either. But the only possible zeroes
were in Λ, and so ℘−Q is entire. By compactness of a fundamental
region for Λ, any Λ-periodic entire function is bounded hence (by
Liouville) constant. Since ℘−Q is zero at 0, this constant is zero and
℘ = Q.

In the exercises below, you will also show that ℘ is an even func-
tion (℘(u) = ℘(−u)) and (℘′)2 = 4℘3 + a℘ + b for some a, b ∈ C.
In each case, you get equality by showing the right-hand side minus
the left-hand side has no poles and is zero at some point (as in the
uniqueness argument just described). The upshot is that

f : C/Λ→ P2

defined by

u 7→ [1 : ℘(u) : ℘′(u)] for u 6= 0̄

and 0̄ 7→ [0 : 0 : 1]

parametrizes (or normalizes) C = {Z0Z2
2 = 4Z3

1 + aZ1Z2
0 + bZ3

0}, a
smooth cubic with the affine equation

y2 = 4x3 + ax + b.

What we have said so far only gives that f (M) ⊆ C, but viewing
the smooth curve C as a complex manifold, and f as a morphism
M → C, the open mapping theorem from complex analysis says the
image is open; while on the other hand the image of a compact set by
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a continuous map is compact (hence closed in C). So f (M) is open
and closed in C, and thus f (M) = C.

Exercises
(1) Show that the rational canonical map f : P1 → Pn has the fol-

lowing property: the image of any collection of k (≤ n + 1) dis-
tinct points {w1, . . . , wk} ⊂ P1 is in general position (spans a
Pk−1 in Pn). [Hint: Vandermonde determinant.] Then, taking
k = 2, explain why this shows f is injective.

(2) Turning to the case n = 3 in Example 7.3.7 (i.e. the twisted cubic),
(a) actually prove that V = Image( f ) and (b) that you cannot
throw out any of the three equations defining V.

(3) Show that the map P2 → P5 given by [Z0 : Z1 : Z2] 7→ [(Z0)
2 :

Z0Z1 : Z0Z2 : (Z1)
2 : Z1Z2 : (Z2)

2] is (a) well-defined and (b)
holomorphic (i.e. a “morphism of complex manifolds”), then (c)
write (polynomial) equations expressing the image as an alge-
braic variety. (For (c) you can just write the equations and not
prove it.)

(4) Let λ1, λ2 ∈ C be two complex numbers which are R-linearly
independent, and let

Λ = Zλ1 + Zλ2 = {n1λ1 + n2λ2| n1, n2 ∈ Z}

be the lattice in C that they generate.
(a) Show that the series

℘(u) =
1
u2 + ∑

λ ∈ Λ
λ 6= 0

(
1

(u− λ)2 −
1

λ2

)

is absolutely and uniformly convergent on any compact subset
of the complex u-plane which does not contain any of the points
of Λ. [Hint: any compact subset is contained inside one of the
following form: |u| ≤ K ∩ |u − λ| ≥ ε (∀λ). Break the sum
into terms with |λ| ≤ 2K, and |λ| > 2K, and use (essentially) the
Weierstrass M-test.]



EXERCISES 105

(b) Verify the pole condition in Example 7.3.8: that all poles are
on Λ, and in a neighborhood U of 0, ℘(u) = u−2 + h(u) with
h holomorphic and h(0) = 0. [Hint: what do you know about
an absolutely and uniformly convergent series of analytic func-
tions?]
(c) Show that ℘ is a doubly-periodic function; that is, show that

℘(u + λ) = ℘(u) for every u ∈ C and every λ ∈ Λ.

[Hint: From (a), you can calculate the derivative ℘′(u) by dif-
ferentiating each term of the series defining ℘(u). First prove
℘′(u + λ) = ℘′(u), then integrate.]

(5) Now forget the explicit formula for ℘(u) just given, and retain
just these facts: that ℘ ∈ K(C) is Λ-periodic with all poles ∈ Λ,
and locally of the form ℘(u) = u−2 + h(u) with h holomorphic
(on some U ⊂ C containing a fundamental domain) and h(0) =
0. Prove that (a) ℘(u) = ℘(−u) [ =⇒ h even =⇒ h′ odd] and
(b) (℘′(u))2 = 4(℘(u))3 + a℘(u) + b for some a, b ∈ C. [See hint
given in Example 7.3.8.]

(6) State and prove the general holomorphic IFT used in the proof
of Theorem 7.2.1. [Hint: imitate the proof of Prop. 7.1.2, but now
making use of Prop. 7.1.1.]


