
CHAPTER 8

The connectedness of algebraic curves

The main theorem of this chapter will be that the smooth part1

C\sing(C) of an irreducible algebraic curve C ⊂ P2 is path-connected
(and then, of course, so is C). For example, in Exercise 5 of Chapter
3, you showed that the complement of the ODP p̂ = [1 : 0 : 0] in the
singular cubic curve {Y2Z − X2Z + X3 = 0}, viewed as a complex
1-manifold, is isomorphic to C∗ — which is certainly connected.

Just so that there is no confusion, we should say what the situa-
tion is for reducible curves right away and why the result does not
generalize. For plane projective algebraic curves with more than one
irreducible component, say C = ∪Ci, the components Ci must inter-
sect (this will be one consequence of Bezout’s theorem later), making
C connected. But the complement of the singularities in C will not
be connected, as these will include all of the intersection points.

We begin by introducing a new, somewhat technically involved,
tool for dealing with singularities, intersections, and projections of
curves.

8.1. Resultants and discriminants

Let D be a unique factorization domain (UFD), where we re-
call that this is a commutative domain in which each element has
a unique factorization into irreducibles, up to reordering and multi-
plication by units. In a UFD, amongst other things, the notion of a
greatest common divisor2 has meaning. By the Gauss lemma, D[y] is

1We will show that the set sing(C) of singular points is always finite
2Recall that these are well-defined up to units (invertible elements); for example
in C[x] or C[x, y] the units are C∗, hence the notion of “monic gcd” (which is com-
pletely well-defined).
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108 8. THE CONNECTEDNESS OF ALGEBRAIC CURVES

also a UFD. In practice we will always take D to be C or C[x]. (Note
that C[x] is a PID, but C[x, y] is not.)

Consider f (y) = a0ym + a1ym−1 + · · ·+ am, g(y) = b0yn + b1yn−1 +

· · ·+ bn elements of D[y] with a0, b0 ∕= 0.

8.1.1. DEF INITION. The resultant3 of f and g, written R( f , g), is
the element of D given by the determinant of the (n + m)× (n + m)

Sylvester matrix4

M( f ,g) :=

%

&&&&&&&&&&&&&&&'

a0 a1 · · · · · · am 0 · · · 0

0 a0 a1 · · · · · · am
. . . ...

... . . . . . . . . . 0
0 · · · 0 a0 · · · · · · am−1 am

b0 b1 · · · · · · bn 0 · · · 0

0 b0 b1 · · · · · · bn
. . . ...

... . . . . . . . . . 0
0 · · · 0 b0 · · · · · · bn−1 bn

(

)))))))))))))))*

.

Now writing K for the field of fractions of D, we have the

8.1.2. PROPOSITION. R( f , g) = 0 ⇐⇒ gcdK[y]( f , g) ∕= 1.5

PROOF. The gcd (say, h) is nontrivial if and only if

(8.1.3) Fg = G f

for some F = A0ym−1 + · · ·+ Am−1 and G = B0yn−1 + · · ·+ Bn−1 in
D[y]. Indeed, if h ∕= 1 then put F = f /h and G = g/h. Conversely,
since deg F < deg f and deg G < deg g, and both sides of (8.1.3)
factor into the same irreducibles, f and g have a common factor of
degree > 0.

3also called “eliminant”, since y is eliminated
4the line in the matrix is just an organizational device — it has no meaning
5two further equivalent conditions: (i) degy(gcdD[y]( f , g)) > 0; and, noting that
K[y] is a PID, so that the ideal ( f , g)K[y] = (gcdK[y]( f , g)), (ii) ( f , g)K[y] ∕= (1)K[y].



8.1. RESULTANTS AND DISCRIMINANTS 109

In turn, (8.1.3) is equivalent to

(8.1.4)

a0B0 = b0A0

a1B0 + a0B1 = b1A0 + b0A1
...

amBn−1 = bn Am−1

being satisfied for some {Ai}m−1
i=0 , {Bj}n−1

j=0 ⊂ D. To get from (8.1.3)
to (8.1.4), just take coefficients of ym+n−1, ym+n−2, . . . , 1.

Now notice that (8.1.4) can be rephrased in matrix multiplication
terms: there exist {Ai}, {Bj} such that

tM( f ,g).

%

&&&&'

B0
...

Bn−1
−A0

...
−Am−1

(

))))*
= 0.

In other words, we have shown h ∕= 1 is the same as ker(tM( f ,g)) ∕=
{0}, i.e. det(M( f ,g)) = 0. □

8.1.5. DEF INITION. D( f ) := R( f , f ′) is the discriminant of f . Here
f ′ denotes the formal derivative ∂ f

∂y .

8.1.6. EXAMPLE. If f ∈ C[y], then D( f ) ∈ C is a number, and the
criterion

(8.1.7) D( f ) vanishes ⇐⇒ f has a multiple root

follows immediately from Prop. 8.1.2. For the affine curve

z2 = 4y3 + ay + b

to be singular, we need two of the roots of the right-hand side to
coincide. That is, by (8.1.7), we need

0 = R(4y3 + ay + b, 12y2 + a) =

???????????

4 0 a b
4 0 a b

12 0 a
12 0 a

12 0 a

???????????
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which after a bit of row-reduction

=

???????????

4 0 a b 0
0 4 0 a b
0 0 −2a −3b 0
0 0 0 −2a −3b
0 0 12 0 a

???????????

= 16(4a3 + 12 · 9b2) = 64(a3 + 27b2).

This recovers the result from Exercise 2 of Chapter 6.

8.1.8. EXAMPLE. If f ∈ C[x, y], then D( f ) ∈ C[x] is a polynomial
and from Prop. 8.1.2 we have:

(8.1.9) D( f ) vanishes at x0 ⇐⇒ f (x0, y) has a multiple root in y.

The collection of x0’s where this happens, that is, the set of roots of
D( f ), is called the discriminant locus for the projection of the affine
curve { f (x, y) = 0} onto the x-line:

x

y
f=0

discriminant locus

8.1.10. PROPOSITION. An irreducible (reduced) algebraic curve {F =

0} ⊂ P2 has (if any) finitely many singularities.

PROOF. The affine polynomial f (x, y) = F(1, x, y) has multiple
roots in y for x in the discriminant locus ∆ = {(D( f ))(x) = 0} ⊆ C.
We may assume f has positive degree in y, since otherwise V( f ) is
just a vertical line.
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Since f is irreducible in C[x, y] of positive degree in y, the identi-
cal vanishing of D( f ) would imply that V( f ), hence V̄(F), was non-
reduced. So D( f ) is a nontrivial polynomial, and ∆ is finite:

(8.1.11) #{x ∈ C | ∃y such that f (x, y) = fy(x, y) = 0} < ∞

It is easy to argue directly6 that were V( f ) to contain a vertical line
{x = α}, then (x − α) would divide f (contradicting irreducibility).
So by (8.1.11) and Prop. 2.1.15, in fact

#{p ∈ C2 | f (p) = fy(p) = 0} < ∞.

The set in brackets includes all singularities of V( f ). The only pos-
sible additional singularities of V̄(F) are the (finitely many) points
where it meets the line at ∞. □

8.2. Monodromy and connectedness

Let Ω ⊆ C be a region, that is, an open connected subset. Let
∆ ⊂ Ω be a small disk about a point p ∈ Ω on which one is given a
holomorphic function, f ∈ O(∆). We are interested in the question
of when f extends to a holomorphic function on all of Ω. To see why
this doesn’t always happen, take Ω = C and ∆ a small disk about
z = 1: then f = 1

z only extends to a holomorphic function on C∗.
Even worse, f = log(z) becomes “multivalued” on C∗ and so (as a
holomorphic function) only extends to C\R≤0.

To give a condition which will ensure the existence of a well-
defined holomorphic extension, we need the concept of analytic con-
tinuation. Define a path γ ⊂ Ω from p to q to be the image of a
continuous function P : [0, 1] → Ω with P(0) = p and P(1) = q.
(Here we are allowed to pick q = p.) An analytic continuation of f
along γ consists of

• a partition of γ into segments {γi}N
i=0,

• a covering of γ by disks ∆i ⊃ γi (with ∆0 = ∆), and

6or you can wait for Study’s lemma in the next Chapter
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• functions fi ∈ O(∆i) (with f0 = f ) satisfying fi ≡ fi+1 on
∆i ∩ ∆i+1:

C

C

p

p

analytic continuation of f

γ

∆

∆

γi

q
∆i

,f

,fi

q

If we continue f along two different paths from p to q and compare
the “results”, i.e. the last function fN ∈ O(∆N) (in the neighborhood
of q) in each case, these need not agree. In the above example of
f = log(z) on a disk about p = {z = 1}, we can analytically con-
tinue f along any path in C∗. However, if we take q = p so that the
path is closed, then we do not have fN(p) = f(0)(p): they differ by
2π

√
−1 times the winding number of the path about z = 0, hence

the “multivaluedness” referred to above. This problem only occurs,
however, for non-simply-connected regions:

8.2.1. PROPOSITION. [RIEMANN MONODROMY PRINCIPLE] Given
a region Ω ⊆ C which is simply connected, i.e. π1(Ω) = {0}. Let ∆ ⊂ Ω
be a small disk, and assume that f ∈ O(∆) can be analytically continued
along any path γ ⊂ Ω starting at p ∈ ∆. Then there exists f̃ ∈ O(Ω)

extending f .

We will frequently use this together with the

8.2.2. PROPOSITION. [HEREDITY PRINCIPLE] For F(x, y) ∈ O(C2)

and f ∈ O(∆) satisfying

(8.2.3) F(x, f (x)) = 0,

the analytic continuation of f along any path γ will also satisfy (8.2.3).
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PROOF. Since F and each fi in the analytic continuation are holo-
morphic, so is each F(x, fi(x)) (on ∆i). But F(x, f (x)) ≡ 0 on ∆ =

∆0 by assumption, and since f = f0 ≡ f1 on ∆0 ∩ ∆1, we have
F(x, f1(x)) ≡ 0 on ∆0 ∩ ∆1 and therefore (by basic complex analy-
sis) on all of ∆1. Simply iterate this argument for i = 1, . . . , N. □

Now given an affine algebraic curve C = { f0(x0, y) = 0} with
f0 of degree n, it is convenient to write C as the vanishing locus of a
monic polynomial in y over C[x]:

(8.2.4) f (x, y) = yn + a1(x)yn−1 + · · ·+ an(x) = 0.

This is acheived by performing a change of variable x0 = x + λy and
writing f (x, y) := f0(x0, y) = f0(x + λy, y), which has coefficient of
yn depending polynomially on λ; choose λ so that this coefficient is
1. (The main point is that in f0(x0, y), the yn term may be zero, and
we want to remedy that.)

Having put the equation of C in this form, we write

π : C −→ C

(x, y) +−→ x

for the projection of the curve to the x-axis. Writing D := {D( f )(x) =
0} for the discriminant locus of this projection, by (8.1.9) we have that
for x ∈ C\D, the fibre π−1(x) consists of n distinct points. For
some fixed disk ∆ ⊂ C\D, label these points {y1(x), . . . , yn(x)}. No-
tice that R( f , ∂ f

∂y ) = D( f )(x) ∕= 0 implies that ∂ f
∂y ∕= 0 on { f =

0} ∩ π−1(∆), so that the holomorphic IFT (Prop. 7.1.2) gives yi(x) ∈
O(∆). The point here is that the “roots” of (8.2.4) in y are algebraic
— hence multivalued — functions of x, but we can take well-defined
holomorphic branches of them over ∆. As we shall see, the multival-
uedness will intertwine them outside ∆.

Label the points of D = {p1, . . . , pK}, and let Γ be the path in
P1 consisting of segments connecting ∞ to p1, p1 to p2, and so on
up to pK. Then the region Ω := (P1\Γ) ⊂ C is simply connected.
By Propositions 8.2.1-8.2.2, the {yi(x)} extend to functions in O(Ω)
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which still satisfy

(8.2.5) f (x, yi(x)) = 0.

to "i   "8 C

Γ

= points of D Ω=     ΓP \
1

Analytically continued through Γ in C\D, the yi continue to satisfy
(8.2.5) by the heredity principle, but may swap.

8.2.6. EXAMPLE. f (x, y) = y3 − x, D = {0}, Γ = R≤0. Pass-

ing through Γ cyclically permutes y1(x) = 3
√

x, y2(x) = e
2π

√
−1

3 3
√

x,

y3(x) = e
4π

√
−1

3 3
√

x.

This swapping (or permutation)7 of the yi(x) gives rise to an
equivalence relation “∼”: yi(x) ∼ yj(x) if one may be analytically
continued into the other in C\D. An equivalence class is just all the
{yλ} which are equivalent to a given yi in this sense.

8.2.7. PROPOSITION. For any equivalence class E of ∼, formed (re-
ordering if necessary) by y1(x), . . . , ym(x),

(8.2.8)
m

∏
λ=1

(y − yλ(x))

belongs to C[x, y].

7The transformations of an algebraic structure arising from its transport around
loops (in this case, loops in C about points of D) are what is meant by the word
monodromy in general. So the Riemann monodromy principle is really a statement
about the absence of monodromy.
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Put differently: while the {yλ(x)}m
λ=1 are multivalued algebraic

functions on C\D, the elementary symmetric polynomials in them
are not multivalued; in fact, they are polynomials!8

8.2.9. COROLLARY. C irreducible =⇒ C\π−1(D) is connected ( =⇒
C connected).

PROOF ASSUMING PROP. 8.2.7. If f ∈ C[x, y] doesn’t factor, then
by the Proposition there can be only one equivalence class: E =

{1, . . . , n}. So the complete set of “branches” {yi(x)} is acted on
transitively by monodromy about D, and one can therefore draw a
path on C\π−1(D) connecting any two points. □

We now prove Prop. 8.2.7, using some theorems from complex
analysis. In particular, recall that Rouché’s theorem asserts that for two
holomorphic functions f , g ∈ O(R) on a simply connected region9

with | f | > |g| on a simple closed curve γ ⊂ R, f + g and f have the
same number of zeroes (counted with multiplicity) inside γ.

PROOF. The product (8.2.8) is clearly well-defined on C\D, since
monodromy about D simply swaps its factors; hence it is in O(C\D).
Write

(8.2.10) ∏m
λ=1(y − yλ(x)) =

m

∑
j=0

(−1)m−jem−j(y1(x), . . . ym(x))yj

where em−j(y1(x), . . . , ym(x)) =: em−j(x) denotes the elementary sym-
metric polynomials in the {yλ}. Again, because these are not changed
under monodromy, we have em−j(x) ∈ O(C\D). Observe that given
α ∈ D with neighborhood Nα (a small disk about α), the polynomials
aj(x) from (8.2.4) satisfy

x ∈ Nα =⇒ |aj(x)| ≤ M (∀j)

for some M ∈ N. Fixing x0 ∈ Nα \ {α}, put aj = aj(x0) and

F(y) = yn , G(y) = yn + a1yn−1 + · · ·+ an,

8we use λ to index E (i.e. 1, . . . , m) and i to index {1, . . . , n}
9the main point is that R should contain the “interior” of γ
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so that the {yi(x0)} are the roots of G. On γ = {|y| = M + 1} ⊂ C,
we have

|G−F| = |a1yn−1 + · · ·+ an| ≤ M
#
(M + 1)n−1 + · · ·+ 1

$

= (M + 1)n − 1 < (M + 1)n = |F|.
By Rouché, F and G have the same number of zeroes inside γ; since
F = yn has n zeroes (at y = 0!), we find that

|yj(x0)| < M + 1 for all j = 1, . . . , n and x0 ∈ Nα.

Consequently the ek(x) ∈ O(C\D) are bounded on Nα ∩ (C\D) =

Nα\{α}, and so by the Riemann removable singularity theorem ex-
tend across {α}. Doing this for each α ∈ D, we conclude that ek(x) ∈
O(C).

So the coefficients of the yj’s in (8.2.10) are entire functions of x.
To prove that they are polynomials in x, we shall have to consider
their behavior about x = ∞. If we work in the local coordinates
x̃ = 1

x , ỹ = y
x about [0 : 1 : 0] in P2, then the polynomial (8.2.4)

defining C becomes10

x̃n f
#

1
x̃ , ỹ

x̃

$
= ỹn +

#
x̃a1(

1
x̃ )
$

ỹn−1 + · · ·+ x̃nan(
1
x̃ ),

with roots

(8.2.11) ỹi(x̃) = x̃yi(
1
x̃ ).

Let N∞ ⊂ P1 be a small neighborhood of x̃ = 0 (i.e. x = ∞) and
N ∗

∞ := N∞\{x̃ = 0}. By (8.2.11), the monodromy of the {ỹi}n
i=1

about x̃ = 0 stabilizes the subset {ỹλ}m
λ=1, so that the

ek(ỹ1(x̃), . . . , ỹm(x̃)) = x̃kek(
1
x̃ )

are well-defined holomorphic functions on N ∗
∞. Since deg(aj(x)) ≤

j, the x̃jaj(
1
x̃ ) are polynomials in x̃ hence bounded on N∞. Using

Rouché as above, the ek({ỹλ(x̃)}m
λ=1) are also bounded on N ∗

∞, and
thus extend to holomorphic functions on N∞.

10Here we are essentially taking the projective completion of C and restricting that
to U1 ⊂ P2.
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In other words, ek(x) = ek(
1
x̃ ) has a pole at x = ∞ of order at most

k. Since ek(x) was also holomorphic on C, we have ek ∈ K(P1). Now
K(P1) ∼= C(P1) and so ek(x) = P(x)

Q(x) where P, Q are polynomials;
since its only pole is at ∞, Q is a constant. Therefore each ek ∈ C[x],
and with (8.2.10) we see that (8.2.8) is a polynomial in C[x, y]. □

Exercises
(1) Are the real points11 of a smooth algebraic curve ⊂ P2 necessarily

connected?
(2) For what values of a, b does x4 + ax + b have a multiple root?
(3) Find the intersection points of the two conics x2 + 2y2 = 3 and

x2 + xy + y2 = 3 in C2, starting by taking a resultant.
(4) Consider the family of affine curves {Cλ}λ∈C defined by λxy =

(x+ 1)(y+ 1)(x+ y+ 1). Take discriminants twice, first in C[λ, x]
(eliminating y) and then in C[λ] (eliminating x), to find the set of
(three) values of λ for which Cλ is singular. Why does this work?
[Hint: you may wish to use a computer to take the second dis-
criminant.] This is called the discriminant locus of the family of
curves.

(5) Let C be defined by y24 = x12(x − 1)3(x + 1)3(x − 2)4(x + 2)2,
with covering map π : C → C sending (x, y) +→ x as above. Ex-
plicitly describe the action of monodromy about D = {0,±1,±2}
on the “branches” (or “decks”, or “sheets”) of C over C, as given
by the {yi(x)} on C \ Γ. Conclude that C \ sing(C) is connected.
[You can use Γ = [−2, 2] here.]

(6) In the previous exercise, the fundamental group π1(C \ D) acts
on the set of branches through a cyclic (abelian) group. If we
instead take C to be the curve (1− x)y6 +(1+ x)y3 +(1− x) = 0,
can you show that π1 acts through a nonabelian group? [Start by
finding D, which consists of 3 points. Interpret C(x) as a subfield
of C(y) (by presenting x as a rational function of y) and describe
the monodromy action via automorphisms of C(y)/C(x).]

11i.e. points on the curve which can be written [X0 : X1 : X2], with all Xi ∈ R. See
also Exercise 5 of Chapter 2 and Exercise 2 of Chapter 5.


