CHAPTER 9

Hilbert's Nullstellensatz

In something of an algebraic detour, we will now prove Theorem 5.3.1 for affine hypersurfaces. In the general case, we shall also state (but not prove) a reformulation which lays out the correspondence between affine algebraic varieties and ideals in commutative rings.

9.1. Resultants (bis)

We need another result on resultants. As in $\S 8.1$ let \mathbb{D} be a UFD with fraction field K; and for $f=a_{0} Y^{n}+a_{1} Y^{n-1}+\cdots+a_{n}$ and $g=$ $b_{0} Y^{m}+b_{1} Y^{m-1}+\cdots+b_{m}$ polynomials in $\mathbb{D}[Y]$, define $\mathcal{R}(f, g):=$ $\operatorname{det} M_{(f, g)}$. (In case \mathbb{D} is itself a polynomial ring, we will often write $\mathcal{R}_{Y}(f, g)$ to make it clear that Y is the variable being eliminated.)
9.1.1. Proposition. $\mathcal{R}(f, g)=G f+F g$ for some $F, G \in \mathbb{D}[Y]$ with $\operatorname{deg} G<\operatorname{deg} g, \operatorname{deg} F<\operatorname{deg} f$.

Proof. If $\mathcal{R}(f, g)=0$, then we are done by (8.1.3). Otherwise, write

$$
\begin{array}{cccccc}
Y^{m-1} f & =a_{0} Y^{n+m-1} & +a_{1} Y^{n+m-2} & +\cdots & +a_{n} Y^{m-1} & \tag{9.1.2}\\
Y^{m-2} f & = & a_{0} Y^{n+m-2} & +\cdots & \cdots & +a_{n} Y^{m-2} \\
\vdots & & & & & \\
f & & & a_{0} Y^{n} & +\cdots & \cdots
\end{array}+a_{n}
$$

Viewing the system (9.1.2) as a vector equation, the RHS is evidently

$$
M_{(f, g)}\left(\begin{array}{c}
Y^{n+m-1} \\
Y^{n+m-2} \\
\vdots \\
\dot{Y}
\end{array}\right) .
$$

Moreover, by Cramer's rule we have (in K) $M_{(f, g)}^{-1}=\left(\operatorname{det} M_{(f, g)}\right)^{-1} A$, where A is the adjugate matrix with $(i, j)^{\text {th }}$ entry $(-1)^{i+j}$ times the $(j, i)^{\text {th }}$ minor of $M_{(f, g)}$. In other words, the entries of

$$
\mathcal{R}(f, g) M_{(f, g)}^{-1}=A
$$

are in \mathbb{D}. Applying this to both sides of (9.1.2) thus produces a system of the form

$$
\begin{array}{cccc}
? ? & =\mathcal{R}(f, g) Y^{n+m-1} & & \\
? ? & \mathcal{R}(f, g) Y^{n+m-2} & & \\
\vdots & & & \ddots \tag{9.1.3}\\
? ? & & & \\
? ? & & \mathcal{R}(f, g)
\end{array}
$$

where each "??" is a \mathbb{D}-linear combination of the entries to the left of " $=$ " in (9.1.2). In particular, the last row of (9.1.3) is

$$
G_{0} f+F_{0} g=\mathcal{R}(f, g),
$$

where $G_{0}, F_{0} \in \mathbb{D}[Y]$ satisfy $\operatorname{deg} G_{0} \leq m-1, \operatorname{deg} F_{0} \leq n-1$.

We should mention the formula for the resultant of two polynomials whose irreducible factors are all linear (or constant) in y, although we will neither use nor prove it:
9.1.4. Proposition. If f and g decompose into linear factors $f=$ $a_{0} \prod_{i}\left(Y-x_{i}\right), g=b_{0} \prod_{j}\left(Y-y_{j}\right)\left(\right.$ for $\left.x_{i}, y_{j} \in \mathbb{D}\right)$, then $\mathcal{R}(f, g)=$ $a_{0}^{m} b_{0}^{n} \prod_{i, j}\left(x_{i}-y_{j}\right)$.

9.2. Study's lemma

We continue to assume that \mathbb{D} is a UFD with $f \in \mathbb{D}[Y]$ of degree n. Given $\delta \in \mathbb{D}$, we have the ring homomorphism given by
"evaluation at δ ":

$$
\begin{array}{llc}
\mathbb{D}[Y] & \xrightarrow{\theta_{\delta}} & \mathbb{D} \\
G(Y) & \longmapsto & G(\delta)
\end{array} .
$$

9.2.1. Proposition. (i) If $f(\delta)\left(=\theta_{\delta}(f)\right)=0$, i.e. δ is a root of f, then $(Y-\delta) \mid f(Y)$.
(ii) f has at most n roots in \mathbb{D}.

Proof. (i) By the division algorithm,

$$
\begin{equation*}
f=q \cdot(Y-\delta)+r \tag{9.2.2}
\end{equation*}
$$

where $\operatorname{deg} r<\operatorname{deg}(Y-\delta)=1$, i.e. $r \in \mathbb{D}$. Applying θ_{δ} to (9.2.2), we have

$$
0=f(\delta)=q(\delta) .0+r
$$

and thus $r=0$, so that $(Y-\delta)$ divides f.
(ii) Follows from (i) (and the fact that $\mathbb{D}[Y]$ is a UFD) since f can have at most $n=\operatorname{deg}(f)$ linear factors.

Now we will specialize to the case $\mathbb{D}=\mathbb{C}[X]$; more generally, the results of this section will hold with any algebraically closed field replacing $\mathbb{C},\left\{X_{1}, \ldots, X_{n-1}\right\}$ replacing X, and S_{n} replacing S_{2}.

Let $F \in \mathbb{D}[Y]=\mathbb{C}[X, Y]=S_{2}$.
9.2.3. Proposition. If $V(F)=\mathbb{C}^{2}$, i.e. F vanishes on all of \mathbb{C}^{2}, then $F=0$ as an element of S_{2}.

Proof. Suppose $F \neq 0$. By Prop. 9.2.1(ii), viewed as an element of $\mathbb{D}[Y], F$ has a finite number of roots in $\mathbb{D}=\mathbb{C}[X]$. Some of these may be constants in \mathbb{C}. Since \mathbb{C} is an infinite field, there exists $\beta \in \mathbb{C}$ such that β is not one of these roots, and then $F(X, \beta)\left(=\theta_{\beta}(F)\right) \neq 0$ in $\mathbb{C}[X]$. Again by Prop. 9.2.1(ii), $F(X, \beta)$ itself has finitely many roots, so there exists $\alpha \in \mathbb{C}$ such that $F(\alpha, \beta) \neq 0$. Hence, F is not identically zero on \mathbb{C}^{2}.
9.2.4. PROPOSITION. [STUDY'S LEMMA] Given $f, g \in S_{2}$, with f irreducible and $V(f) \subseteq V(g)$. Then f divides g.
9.2.5. REMARK. Suppose we drop the requirement that f be irreducible, so that $f=\Pi f_{i}^{m_{i}}\left(f_{i}\right.$ irreducible in $\left.S_{2}\right)$. Then $V\left(f_{i}\right) \subset V(f)$ for each i, and by the Proposition $f_{i} \mid g$ for each i. This implies that $f \mid g^{\sum m_{i}}$, i.e. f divides a power of g.

Proof. Since $f \mid 0$ is trivial, we take $g \neq 0$. By Prop. 9.2.3, we have $V(g) \neq \mathbb{C}^{2}$, which implies $V(f) \neq \mathbb{C}^{2}$ hence $f \neq 0$. We may assume that $f \notin \mathbb{C}$ (since a constant divides anything), and furthermore that $\operatorname{deg}_{Y}(f) \neq 0$ (otherwise just swap X and Y). Writing

$$
f=a_{0}(X) Y^{n}+a_{1}(X) Y^{n-1}+\cdots+a_{n}(X) \notin \mathbb{C}[X]
$$

($n>0$ and $a_{0}(X) \neq 0$), I make the claim: ${ }^{1}$ we can assume that $g \notin$ $\mathbb{C}[X]$.

Assuming the claim, f and g are of degree >0 in Y, so by Prop. 9.1.1 (with $\mathbb{D}=\mathbb{C}[X]$), $\mathcal{R}_{Y}(f, g)=F g+G f \in \mathbb{C}[X]$ for $\operatorname{deg}_{Y} F<$ $\operatorname{deg}_{Y} f, \operatorname{deg}_{Y} G<\operatorname{deg}_{Y} g$. Given any $\alpha \in \mathbb{C} \backslash V\left(a_{0}\right)$, since \mathbb{C} is algebraically closed there exists a root $\beta \in \mathbb{C}$ of $f(\alpha, Y)$. From $V(f) \subseteq$ $V(g)$ we see that $(\alpha, \beta) \in V(f(\alpha, Y)) \subseteq V(g(\alpha, Y)) \subseteq \mathbb{C}$, so that $f(\alpha, Y)$ and $g(\alpha, Y)$ have a common root for every $\alpha \in \mathbb{C} \backslash V\left(a_{0}\right)$. It follows that $a_{0} \mathcal{R}_{Y}(f, g) \in \mathbb{C}[X]$ evaluates to zero at every $\alpha \in \mathbb{C}$, hence is zero. As $a_{0} \neq 0$, we find $\mathcal{R}_{Y}(f, g)=0$ in $\mathbb{C}[X]$; and then by Prop. 8.1.2, $\operatorname{deg}_{Y}\left(\operatorname{gcd}_{S_{2}}(f, g)\right)>0$. (Alternately, $F g=(-G) f$ $\Longrightarrow f, g$ have a divisor of nonzero degree in Y.) But f is irreducible, so divides any nonzero non-unit dividing it; we conclude that $f\left|\operatorname{gcd}_{S_{2}}(f, g)\right| g$.

To prove the claim, suppose $g \in \mathbb{C}[X] \backslash\{0\}$. Then there exists $\alpha \in \mathbb{C} \backslash V\left(g \cdot a_{0}\right)$. Viewed as a function on \mathbb{C}^{2}, g is constant in Y, so $g(\alpha, \beta) \neq 0 \forall \beta \in \mathbb{C}$. But since $a_{0}(\alpha) \neq 0, \operatorname{deg}_{Y}(f(\alpha, Y))>0$; and then (as \mathbb{C} is algebraically closed) $\exists \beta \in \mathbb{C}$ such that $f(\alpha, \beta)=0$. By assumption, $V(f) \subseteq V(g)$ and so $g(\alpha, \beta)=0$, a contradiction.

[^0]
9.3. The Nullstellensatz

The proof of Study immediately generalizes to \mathbb{C}^{n}. This yields a version of Hilbert's Nullstellensatz for hypersurfaces:
9.3.1. Corollary. If $V(f)=V(g)$ for $f, g \in S_{n}$ and \ldots
(i) f, g are irreducible, then $f=\lambda g\left(\lambda \in \mathbb{C}^{*}\right)$
(ii) f, g are not irreducible, then $\exists M, N \in \mathbb{N}$ such that $f\left|g^{N}, g\right| f^{M}$. Equivalently, f and g have the same irreducible factors.

Proof. (i) Study $\Longrightarrow f \mid g$ and $g \mid f$; (ii) is by Remark 9.2.5.
The point of this is that, modulo issues with powers, there is a bijection between hypersurfaces and principal ideals (i.e. polynomials up to multiplication by constants) in S_{n} which reverses inclusion. That is, provided f and g are "reduced" (all irreducible factors occur with multplicity 1$),(f) \supset(g) \Longleftrightarrow f \mid g \Longleftrightarrow V(f) \subset V(g)$.

To get a more general perspective on this, we introduce a few new ideas. First, given a subset $\mathfrak{X} \subseteq \mathbb{C}^{n}$, we define the ideal of \mathfrak{X} by

$$
I(\mathfrak{X}):=\left\{f \in S_{n} \mid f(\underline{z})=0 \forall \underline{z} \in \mathfrak{X}\right\} .
$$

For example, if f is "reduced", we clearly have $I(V(f))=(f)$ by Study's Lemma: any g vanishing on $V(f)$ is divisible by f. A subset $\mathfrak{X} \subseteq \mathbb{C}^{n}$ is algebraic if it is of the form $V(J)$ for some ideal $J \subset$ S_{n}. (Indeed, this is just an affine algebraic variety.) The statement $V(I(\mathfrak{X}))=\mathfrak{X}$ is true (almost a tautology) for algebraic subsets. Moreover, $I(\cdot)$ reverses inclusions as $\mathfrak{X}_{1} \subset \mathfrak{X}_{2} \Longrightarrow I\left(\mathfrak{X}_{1}\right) \supset I\left(\mathfrak{X}_{2}\right)$.

Given any ideal $J \subset S_{n}$, we let \sqrt{J} denote the radical of J, which is the ideal comprising all elements of S_{n} some power of which belongs to J. A radical ideal is an ideal which equals its own radical. Finally, J is prime $\Longleftrightarrow S_{n} / J$ is a domain $(\Longleftrightarrow J$ is irreducible in the monoid of ideals in S_{n}), and maximal $\Longleftrightarrow S_{n} / J$ is a field.
9.3.2. THEOREM. Let $J \subset S_{n}$ be an ideal.
(i) J is maximal $\Longleftrightarrow J=\left(Z_{1}-\alpha_{1}, \ldots, Z_{n}-\alpha_{n}\right)$ for some $\alpha_{i} \in \mathbb{C}$;
(ii) If $J \neq S_{n}$, then $V(J) \neq \varnothing$;
(iii) $I(V(J))=\sqrt{J}$.

Theorem 9.3.2(iii) is the standard modern formulation of the Nullstellensatz, ${ }^{2}$ and is equivalent to Theorem 5.3.1 (why?). It has the following important consequence, where an algebraic subset is irreducible if it is not a union of two proper algebraic subsets:
9.3.3. Corollary. The correspondence

$$
\begin{array}{ccc}
\text { ideals } & & \text { subsets } \\
\left\{J \subset S_{n}\right\} & \underset{V}{\leftrightarrows} & \left\{\mathfrak{X} \subset \mathbb{C}^{n}\right\}
\end{array}
$$

induces inclusion-reversing bijections
$\begin{array}{c}\text { \{radical ideals }\} \\ \cup\end{array} \longleftrightarrow \begin{array}{c}\text { \{algebraic subsets }\} \\ \text { \{prime ideals }\}\end{array} \quad \longleftrightarrow \quad$ \{irred. alg. subsets $\}$.

The last correspondence is checked in the exercises, by showing that $V\left(J_{1} J_{2}\right)=V\left(J_{1}\right) \cup V\left(J_{2}\right)$; the rest is clear from the Theorem.

One can push the relation between affine algebraic geometry and commutative algebra much further. For example, the ring of regular functions on an irreducible affine variety $V=V(\mathfrak{P})$ (\mathfrak{P} a prime ideal) is defined by

$$
\mathbb{C}[V]:=S_{n} / \mathfrak{P},
$$

and it is easy to see that this embeds (say, for V smooth) in $\mathcal{O}(V)$. (The idea is that \mathfrak{P} is the kernel of the map from S_{n} to $\mathcal{O}(V)$ given by restricting polynomial "functions" to V, and so S_{n} / \mathfrak{P} is its image.) $\mathbb{C}[V]$ is sometimes also called the coordinate ring of V. Furthermore, if V is the affine part of a smooth projective variety \bar{V}, the field of meromorphic functions $\mathcal{K}(\bar{V})$ is isomorphic to the fraction field $\mathbb{C}(V)$ of $\mathbb{C}[V]$. Usually $\mathbb{C}(V)$ is called the function field of \bar{V} (or V).

There is even a way to recover varieties from their coordinate rings; this is the "Spec" operation. Very roughly speaking, the affine story is this: any commutative ring A which is finitely generated

[^1]over \mathbb{C} may be presented as $\mathbb{C}\left[z_{1}, \ldots, z_{N}\right] / I$ (where $I \subseteq \mathbb{C}\left[z_{1}, \ldots, z_{N}\right]$ is an ideal), and then you take $V(I) \subseteq \mathbb{C}^{N}$. This gives one realization of $\operatorname{Spec}(A)$; of course, there are many ways of writing A in this form (different N, different I, etc.). From the standpoint of scheme theory, $\operatorname{Spec}(A)$ is something intrinsic, an affine scheme which exists in the absence of any particular embedding in an affine space \mathbb{C}^{N}. The best resources on this are the book by E. Kunz and the classic text by R. Hartshorne.

The exercises that follow explore some consequences of the Nullstellensatz.

Exercises

(1) Prove: (i) that for any algebraic subset $\mathfrak{X} \subseteq \mathbb{C}^{n}, V(I(\mathfrak{X}))=\mathfrak{X}$; (ii) that for any two ideals $J_{1}, J_{2} \subseteq \mathbb{C}\left[Z_{1}, \ldots, Z_{n}\right], V\left(J_{1} J_{2}\right)=V\left(J_{1}\right) \cup$ $V\left(J_{2}\right)$.
(2) For any finite collection of ideals $\left\{J_{i}\right\}_{i=1}^{m}$, show that (i) $V\left(\sum_{i} J_{i}\right)=$ $\cap_{i} V\left(J_{i}\right)$ and (ii) $V\left(\cap_{i} J_{i}\right)=V\left(J_{1} \cdots J_{m}\right)=\cup_{i} V\left(J_{i}\right)$. [Hint for (ii): $V(J)=V(\sqrt{J})$ (why?); so start by checking $\sqrt{\cap_{i} J_{i}}=\sqrt{J_{1} \cdots J_{m}}$.]
(3) Show that an affine variety V is irreducible if and only if $I(V)$ is a prime ideal. [Hint for one direction: if $J:=I(V)$ is not prime, then $\exists f_{1}, f_{2} \in S_{n} \backslash J$ with $f_{1} f_{2} \in J$. Take $J_{i}:=\left(f_{1}\right)+J$, show $V\left(J_{i}\right) \subsetneq V$, and consider $J_{1} J_{2}$.]
(4) Prove that any decreasing chain $V_{1} \supset V_{2} \supset \cdots$ of affine varieties (in \mathbb{C}^{n}) "stabilizes" at some m : i.e., $V_{m}=V_{m+1}=\cdots$. [Hint: you may assume that every ideal in S_{n} is finitely generated (Hilbert basis theorem). Why does this imply that any ascending chain of ideals must stabilize?]
(5) (i) Show that every nonempty affine variety $V=V(J) \subset \mathbb{C}^{n}$ may be written uniquely as a finite union $V_{1} \cup \cdots \cup V_{r}$, where each V_{i} is irreducible and $V_{j} \not \subset V_{i}$ for $i \neq j$. [Hint: suppose otherwise, and use Exercise (4).] (ii) Work this out for $V(J)$, where $J=\left(z_{1} z_{2}-z_{3}, z_{1} z_{3}-z_{2}^{2}\right)$.

[^0]:

[^1]: ${ }^{2}$ Again, we can replace \mathbb{C} here with any algebraically closed field. (A proof of Theorem 9.3.2 is in my Algebra II notes, but would take us too far afield here.)

