Lecture 10: Fractional linear transformations

I. Group structure

In this course we'll meet the automorphism groups (of 1-to-1 analytic self-maps)

\[\text{Aut}(\mathbb{C}) = \{ z \mapsto \alpha z + \beta \mid \alpha, \beta \in \mathbb{C}, \alpha \neq 0 \} \]

\[\text{Aut}(D_1) = \{ z \mapsto e^{i\theta} \frac{z-a}{1-z} \mid \theta \in \mathbb{R}, a \in D_1 \} \]

\[\text{Aut}(\mathbb{H}) = \{ z \mapsto \frac{az+b}{cz+d} \mid a, b, c, d \in \mathbb{R}, ad-bc = 1 \} \]

as well as the isomorphism

\[h \xrightarrow{\equiv} D_1 \]

\[z \mapsto \frac{z-i}{z+i} \]

All are fractional linear transformations (FLT)

\[f_M(z) := \frac{az+b}{cz+d}, \quad M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(\mathbb{C}). \]

\[a, b, c, d \in \mathbb{C} \]

\[ad-bc \neq 0 \]
If we consider the FLT's as a group under composition of functions, then

\[M \rightarrow f_M(z) \]

define a surjective group homomorphism

\[\text{GL}_2(\mathbb{C}) \rightarrow \text{FLT} : \]

- If \(N = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \),

\[(f_M \circ f_N)(z) = \frac{a \left(\frac{A z + B}{C z + D} \right) + b}{c \left(\frac{A z + B}{C z + D} \right) + d} = \ldots \]

\[= \frac{(aA + bC)z + (cB + dD)}{(cA + dC)z + (cB + dD)} = f_{M \cdot N}(z) . \]

- \(f_M(z) = z \) (identity) \(\iff \ M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) (acting on \(\mathbb{C}^\times \)):

\[\Rightarrow \frac{dz + 0}{0z + 1} = z \]

\[\Rightarrow \text{if } \frac{a z + b}{a z + d} = z (\forall z \in \mathbb{C}), \text{ then } 0 = ca^2 + (d-a)b + (b^2) \]

\[\Rightarrow c = (d-a) = b = 0 \]

\[\Rightarrow M = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} . \]
So in fact our homomorphism factors through
\[
PGL_2(\mathbb{C}) \cong \frac{GL_2(\mathbb{C})}{\{x \mathbb{C}\} : x \in \mathbb{C}^*}
\]
\[
\cong \frac{SL_2(\mathbb{C})}{\{e^{2\pi i} \} \cdot \{e^{2\pi i a}\}}
\]

But what are the FLT's really transformation of?

We can view \(f_n \) as a function from
\[
\mathbb{C} \setminus \{-\frac{a}{c}\} \cong \mathbb{C} \setminus \left\{ \frac{a}{c}\right\}
\]

which may be extended to
\[
\mathbb{C} \cong \mathbb{C}
\]

by setting
\[
-\frac{a}{c} \mapsto \infty
\]
\[
\infty \mapsto \frac{a}{c}
\]

Remark: In fact, if we define \(\text{Aut}(\mathbb{C}) \) by

- \(f \in \text{Aut}(\mathbb{C}) \) means (i) \(f : \mathbb{C} \setminus \{ \frac{a}{c} \} \to \mathbb{C} \setminus \{ \frac{a}{c} \} \)
- (ii) \(f \) is a small neighborhood
- (iii) \(f(\omega) : U(\omega) \to U(\omega) \)
Then

- \(\exists f^{-1} \) with similar properties (for any such \(f \))

and

- \(\text{FLT} \cong \text{Aut}(\hat{\mathbb{C}}) \)

Heuristic sketch of (\(\star \)): The \(\text{FLT} \cong \text{Aut}(\hat{\mathbb{C}}) \) is easy. Now let \(f \) be an arbitrary \(\hat{\mathbb{C}} \)-analytic automorphism of \(\hat{\mathbb{C}} \): automorphism \(\Rightarrow \) (no essential singularities) \(\Rightarrow \) no common limit points for zeroes & poles.

By our previous results, we can therefore have no limit points of zeroes or poles of \(f \) (otherwise \(f \) or \(\frac{1}{f} \) is identically zero). Since \(\hat{\mathbb{C}} \) is compact, there are therefore only finitely many zeroes and poles; multiplying by a rational function gets rid of these, leaving us with an analytic map \(\hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} \). Since (again) \(\hat{\mathbb{C}} \) is compact, this is bounded, hence by Liouville's constant. We conclude that \(f \) was rational (= \(P/Q \), \(P \& Q \) polynomials). But then, removing any common factors, the mapping degree of \(f \) is the maximum of \(\deg(P) \& \deg(Q) \). This must be 1 for \(f \) to be \(1-1 \).

So \(P \& Q \) are constant or linear \(\Rightarrow f \in \text{FLT} \). \(\Box \)
This used "everything", including Casorati-Weierstrass, Fundamental Thm. of Algebra, Liouville, etc.!! Mathematica for what still has to be proved, I guess...

So we have

\[\frac{\text{SL}_2(\mathbb{C})}{\{\pm 1\}} \cong \text{FLT} \cong \text{Aut}(\hat{\mathbb{C}}). \]

(or $\text{PGL}_2(\mathbb{C})$) (unofficially)

The group structure on FLT clarifies lots of stuff:

- Composition inverses:
 \[(\begin{array}{cc} a & b \\ c & d \end{array})^{-1} = \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right) \]
 (using $ad-bc=1$)

\[\Rightarrow f^{-1}_{(ab, cd)}(w) = \frac{dw-b}{-cw+a}. \]

Indeed, that FLT is a group (under composition) means that all FLT's are 1-to-1.

- Iwasawa decomposition: for real FLT's (more on these below)

 one has

 \[\text{SL}_2(\mathbb{R}) \cong N \cdot A \cdot K \]

 any $M = \left(\begin{array}{cc} 1 & x \\ 0 & 1 \end{array} \right) \left(\begin{array}{cc} \sqrt{g} & 0 \\ 0 & \sqrt{g}^{-1} \end{array} \right) \left(\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array} \right)$
Why 2x2 matrices? If you think of C as
\[P' = \mathbb{C}^2 \setminus \{(0,0)\}, \]
\[\mathbb{C} \xrightarrow{a \in \mathbb{C}^\times} \left[\begin{array}{c} x_1 + x_2 \\ x_1 \end{array} \right] \]
and write elements \([x_1 : x_2]\) instead of \([x_1 : x_2]\), then
\[
\left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} ax_1 + bx_2 \\ cx_1 + dx_2 \end{array} \right]
\]
\[
\left[\begin{array}{c} x_1 : x_2 \end{array} \right] \xrightarrow{a \neq 0} \left[\begin{array}{c} x_1 : x_2 \\ x_1 \end{array} \right] \xrightarrow{\infty} \left[\begin{array}{c} x_1 : x_2 \\ 1 \end{array} \right] \xrightarrow{\infty} \left[\begin{array}{c} x_1 : x_2 \\ 1 : 0 \end{array} \right]
\]
So really, FCTs are linear transformations acting on lines in \(\mathbb{C}^2 \) through the origin.
II. Action on circles

Let
\[
C := \text{set of circles & lines on } \mathbb{C}
\]

\[
\hat{C} := \text{set of circles on } \hat{\mathbb{C}}
\]

(viewed as a sphere via stereographic projection)

(See end of Lecture 1)

Theorem
(a) \(f \in \text{FLT} \) takes \(C \rightarrow C \)
(b) This action is transitive.

Examples

1. Lines are special kinds of circles: ones that contain \(\{ \infty \} \).

\[C \]

\[\hat{C} \]
2. \(z \mapsto \frac{z - i}{z + i} = w \) (takes \(z \to \infty \) to \(D_2 \))

In some sense, the last picture ("degenerate Steiner circles") is telling you "what Cartesian coordinates look like at \(\infty \)" (about \(w = 1 \)).

3. \(z \mapsto \frac{1}{z} = \zeta(z) \) (inversion)

Looks like rotating \(C \) 180° about the orange line.
f(z) = \frac{az+b}{cz+d} \text{ with } a, b, c, d \in \mathbb{C} \\
\text{ sends } \mathbb{R} \to \mathbb{R} \text{ (and these are the only } \text{ FLTs doing this); if } ad - bc > 0, \text{ then also sends } \mathbb{H} \to \mathbb{H}. \text{ These are } \text{ automorphisms of } \mathbb{H} \text{ which (in the } \mathbb{H} \text{ picture) don't mix the upper & lower hemispheres.}

\text{The N.A.K decomposition certainly suggests that they preserve circles: translation by } \alpha; \text{ dilation by } \gamma; \text{ only issue is what the } "K" \text{ notions/FLT do.}

\text{Proof of (a): } F(z) = \frac{az+b}{cz+d} \text{, } a, b, c, d \in \mathbb{C}.

c = 0 \Rightarrow F(z) = \frac{a}{d} z + \frac{b}{d} = \mathcal{L}_{b/d} \circ \mathcal{M}_{a/d} \text{.} \\
c \neq 0 \Rightarrow F(z) = \frac{cz+a}{cz+d} + \frac{b-d}{cz+d} \text{.}
\[\frac{a}{c} \frac{c^2 + d}{c^2 + d} + \frac{b/c - \frac{d^2}{c^2}}{2 + d/c} \]

\[= \tau_{a/c} \circ \mu_{bc-d^2/c^2} \circ J \circ \tau_{d/c} . \]

Now, \(\tau \) preserves \(C \); how about \(J \)?

(Then \(F \) is a composition of such things; done.)

\[J(x+iy) = u+iv \Rightarrow J(u+iv) = x+iy \]

\[\frac{1}{u+iv} = \frac{u}{u^2+v^2} + i \frac{-v}{u^2+v^2} \]

Hence, given an object

\[G = \{ A(x^2+y^2) + Bx + C_y + D = 0 \} \]

\(G \), we can rewrite the equation in \(u,v \) to get

\[J(G) = \{ A \left(\frac{u^2+v^2}{u^2+v^2} \right) + B \frac{u}{u^2+v^2} - C \frac{v}{u^2+v^2} + D = 0 \} \]

\[= \{ A + Bu - Cv + D (u^2+v^2) = 0 \} \]

which is again in \(C \).
To prove (b), we'll need a

Lemma Given \(\{z_1, z_2, z_3\} \) distinct \((\in \mathbb{C})\), \(w_1, w_2, w_3 \) distinct,

\[\exists \! f_m \in \text{FLT} \text{ sending } z_i \mapsto w_i \ (i=1,2,3). \]

Proof of Theorem 3: First, send \(w_3/z_3 \) to \(0,1,\infty \):

\[
\begin{align*}
 f(z) &= \frac{z - z_1}{z - z_3} \cdot \frac{z_2 - z_3}{z_2 - z_1}, \\
 g(w) &= \frac{w - w_1}{w - w_3} \cdot \frac{w_2 - w_3}{w_2 - w_1}, \\
 z_3 &\mapsto f = 0,1,\infty & w_3 &\mapsto g
\end{align*}
\]

\[
(g^{-1} f)(z_i) = w_i \ (\forall i).
\]

So take \(w = g^{-1}(f(z)) \), i.e. \(g(w) = f(z) \).

Example: Find \(f_m \) sending \(-1,0,1 \mapsto -1, i, 1\).

Set \(\frac{z+1}{z-1} = \frac{w+1}{w-1} \), i.e. \(\boxed{w = \frac{z+1}{iz+1}} = f_m(z) \Rightarrow M = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \).
Proof: If \(f, g \) both map \(\{2i, 3\} \to \{\omega_i, \omega_3\} \), then \(g^{-1} \) of fixes \(\{2i, 3\} \). Let \(F \) send \(\{2i, 3\} \) to \(\{0, 1, 2\} \). Then \(h = F \circ g^{-1} \circ f \) fixes 0, \(\infty \).

\[
h(z) = \frac{a + b}{c + d} : x \to \infty \Rightarrow c = 0 \quad a \neq 0
\]

\[
\Rightarrow \quad h(z) = A + B : 0 \to 0 \Rightarrow B = 0
\]

\[
\Rightarrow \quad h(z) = A : 1 \to 1 \Rightarrow A = 1
\]

\[
\Rightarrow \quad z = t = \text{id}(z).
\]

So \(\text{id} = F \circ g^{-1} \circ f \).

\[
F \circ \text{id} \circ F = g^{-1} \circ f
\]

\[
\text{id} = g^{-1} \circ f
\]

\[
g = f.
\]

Corollary: \(\exists! \) \(g \in C \) through any 3 distinct \(\omega_i \in C \).

Proof: \(\boxed{\text{The lemma provides } f \in \text{Filt}} \)

sending \(0, 1, 2 \to \omega_1, \omega_2, \omega_3 \).
Since \(\hat{\mathbb{R}} \subset S \), part (a) of the Theorem implies \(f(\hat{\mathbb{R}}) \subset S \).

So take \(C = f(\hat{\mathbb{R}}) \).

(!) If there are two, then applying \(f^{-1} \) gives 2 elements of \(C \) through \(0, 1, \infty \). But there is no circle in \(C \) through these points, and the only line is \(\hat{\mathbb{R}} \).

(proof of 6)

Given \(C, C' \in S \), take

\(\{z_1, z_2, z_3 \in C \} \) distinct

\(\{w_1, w_2, w_3 \in C' \} \) distinct.

Let \(f \) send

\(z_i \rightarrow w_i \) \((vi) \).

Then \(f(C) \subset S \) and contains the \(\{w_i\} \).

By the Corollary, \(f(C) = C' \).

Coming out of this discussion are 3 things we'd like to investigate in the next lecture:

- Cross-ratio
- Symmetry & orientation (if \(C \rightarrow C' \), what about fixed points)