Lecture 25: Residue Calculus

I. Residues of functions

Recall the setup for studying isolated singularities:
\[f \in \mathcal{H} (D^* (z_0, r)) \]
\[\Rightarrow f(z) = \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n. \]

Define \[\text{Res}_{z_0} (f) := a_{-1}. \]

Fact: \[\int_{C} f(z) \, dz = 2\pi i \text{Res}_{z_0} (f) \]

\[\int_{C} \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n \, dz = \sum_{n \in \mathbb{Z}} a_n \int_{C} (z - z_0)^n \, dz = 2\pi i a_{-1} \]

Remark: \(f \) has a primitive on \(D^* \) \(\iff \) \(\text{Res}_{z_0} (f) = 0 \).

Rules for computing residues:

- Brute force with Laurent series

Example: \[\text{Res}_0 \left(\frac{e^z}{\sin^2 z} \right) = 1 \]
\[
\frac{e^z}{\sin^2 z} = \frac{1 + z + \frac{z^2}{2} + \ldots}{(z - \frac{z^3}{3!} + \ldots)^2} = \frac{1 + z + \frac{z^2}{2} + \ldots}{z^2(1 - \frac{z^3}{3} + \ldots)}
\]
\[
= \left(\frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \ldots\right) \left(1 + \frac{z^2}{2} + \ldots\right) = \frac{1}{z} + \frac{1}{4} + \ldots \quad //
\]

Ex:// \text{Res}_{z=2} \left(\frac{1}{z(z-2)^2}\right) = -\frac{1}{4} ;
\[
\frac{1}{z(z-2)^2} = \frac{1}{z-2} \cdot \frac{1}{z-2} = \frac{1}{2} \frac{1}{z-2} \cdot \frac{1}{z-2} = \frac{1}{z-2} \left(1 - \frac{z-2}{2} + \frac{(z-2)^2}{4} - \ldots\right)
\]
\[
= \frac{1}{2} \left(1 - \frac{z-2}{2} + \frac{(z-2)^2}{4} - \ldots\right) = \frac{1}{2} (z-2)^2 = \frac{1}{4} (z-2)^{-1} + \ldots \quad //
\]

There's a better method for the 2nd example.
In fact, here are six:

1. \(f \) holomorphic at \(z_0 \) \(\Rightarrow \text{Res}_{z_0} \left(\frac{f(z)}{z-z_0}\right) = f(z_0) \)

 Ex:// \text{Res}_{z=\infty} \left(\frac{\log(z+1)}{z-\infty}\right) = \log \pi \quad //

 Proof: \(f(z) = b_0 + b_1(z-z_0) + \ldots \), where \(b_0 = f(z_0) \)
 \[
 \frac{f(z)}{z-z_0} = \frac{b_0}{z-z_0} + b_1 + \ldots \quad \Box
 \]

2. \(f \) holomorphic at \(z_0 \) \(\Rightarrow \text{Res}_{z_0} \left(\frac{f(z)}{(z-z_0)^n}\right) = \frac{f^{(n)}(z_0)}{(n-1)!} \)

 Ex:// \text{Res}_{z=0} \left(\frac{\sin z}{z^{10}}\right) = \frac{[\frac{d^{10}}{dz^{10}} \sin z]}{9!} = \frac{\cos 0}{9!} = \frac{1}{9!} \quad //

 Ex:// \text{Res} \left(\frac{1}{z(z^2-2)^2}\right) = -\frac{1}{2} \frac{1}{1!} = -\frac{1}{4} \quad (\text{using} \frac{d}{dz} \frac{1}{z^2} = -\frac{2}{z^3}) \quad //
Proof: \(f(z) = b_0 + b_1(z-z_0) + \cdots + b_n(z-z_0)^n + \cdots \)

\[= f(z_0) + f'(z_0)(z-z_0) + \cdots + \frac{f^{(n)}(z_0)}{(n-1)!}(z-z_0)^{n-1} + \cdots \]

\[\frac{f(z)}{(z-z_0)^n} = \cdots + \frac{f^{(n-1)}(z_0)}{(n-1)!} \frac{1}{z-z_0} \]

\[\text{Res}_{z_0} f(z) = \lim_{z \to z_0} (z-z_0)f(z) \]

Remark: f has a simple pole at \(z_0 \) \(\iff \) Laurent series def. starts at \(n=-1 \), and \(a_{-1} \neq 0 \).

Example \(\text{Res}_i \left(\frac{e^{\pi z}}{z^2+1} \right) = \lim_{z \to i} \frac{z-i}{(z^2+1)} = \lim_{z \to i} \frac{e^{\pi z}}{2i} = e^{\pi/2} = \frac{e^{\pi i}}{2i} = -\frac{i}{2} \)

and \(\text{Res}_{-1} \left(\frac{e^{\pi z}}{z^2+1} \right) = \lim_{z \to -i} \frac{e^{\pi z}}{z-i} = \lim_{z \to -i} \frac{e^{-\pi i}}{-2i} = -\frac{i}{2} \).

Proof: \(f(z) = a_{-1}(z-z_0)^{-1} + a_0 + \cdots \) \(\text{holo.} \)

\((z-z_0)f(z) = a_{-1} + (z-z_0) \text{(holo.)} \)

\[\to 0 \text{ as } z \to z_0. \]

Here is another generalization of (1):
4. \(f \) has a simple pole at \(z_0 \), \(g \) holomorphic at \(z_0 \) \(\Rightarrow \)
\[\text{Res}_{z_0} (fg) = g(z_0) \text{Res}_{z_0} (f) \]
(Compute by \(\text{Res} \) or other method)

Proof: HW
Ex 1. see below (\(\text{Res} \) II).

5. \(f \) holomorphic at \(z_0 \), \(f(z_0) = 0 \), \(f'(z_0) \neq 0 \) \(\Rightarrow \)
\[\text{Res}_{z_0} \left(\frac{1}{f} \right) = \frac{1}{f'(z_0)}. \]

Ex// \(\text{Res}_0 \left(\frac{1}{e^{z} - 1} \right) = \frac{1}{3} \)
\[\frac{d}{dz} (e^z - 1) \bigg|_{z=0} = 3e^0 = 3 \]

Proof: \(f(z) = b_1 (z - z_0) (1 + h(z)) \), \(h(z_0) = 0 \) (\(h \) holomorphic)
\[\Rightarrow \frac{1}{f(z)} = \frac{1}{b_1 (z - z_0)} (1 - h + h^2 - ...) \]
\[\Rightarrow \frac{a_n}{b_1} = \frac{1}{b_1} = \frac{1}{f'(z_0)}. \]

6. \(\text{ord}_{z_0} (f) = m \) \(\Rightarrow \) \(\text{Res}_{z_0} (f'/f) = m. \)
(\(z_0 \) could be a pole or zero)

Ex// \(\text{Res}_1 \left(\frac{10 + 9}{z^{10} - 1} \right) = 1 \), since \(z^{10} - 1 \) has
a "simple zero" at each 5.
(any 10th root of 1)
Proof: \(f(z) = a_m (z-z_0)^m \left(1 + h(z) \right) \), \(h(z_0) = 0 \) (here \(b.) \)
\[
f'(z) = m a_m (z-z_0)^{m-1} (1 + h(z)) + a_m (z-z_0)^m h'(z)
\]
\[
\frac{f'(z)}{f(z)} = \frac{m}{z-z_0} + \frac{h'(z)}{1 + h(z)} \Rightarrow \text{Res}_{z_0} \left(\frac{f'}{f} \right) = m.
\]

II. Residue formulas

In each case, \(U \subseteq \mathbb{C} \) is open, \(\gamma \subset \overline{U} \) is a closed path which is homologous to zero (in \(U \)) and avoids points where we are taking residues.

(Residue theorem)

\[
\sum_{j} f(z) \, dz = 2\pi i \sum_{j=1}^{m} W(Y, z_j) \text{Res}_{z_j} (f)
\]

Proof: Use \(Y \equiv \sum_{j} W(Y, z_j) \, \partial D_j \)

\[
\int_{\partial D_j} f(z) \, dz = 2\pi i \, \text{Res}_{z_j} (f).
\]

Ex:

\[
\int_{|z|=2} \frac{e^{i\pi z}}{1 + z^2} \, dz = 2\pi i \left(\text{Res}_{z_1} \left(\frac{e^{i\pi z}}{1 + z^2} \right) + \text{Res}_{z_2} \left(\frac{e^{i\pi z}}{1 + z^2} \right) \right)
\]
\[
= 2\pi i \left(\frac{i}{2} - \frac{i}{2} \right) = 0.
\]

(See Ex. 66-68)
\(b \) \(f \in \text{Mer} (U) \implies \left[\text{writing } \Omega_{z_1, \ldots, z_m} = U \text{ (f's zeroes)} \right] \)

\[\int_{\gamma} \frac{f'}{f} \, dz = 2\pi i \sum_{j=1}^{\infty} W(\gamma, z_j) \text{ord}_j (f) \]

\text{(Proof: use (a) + (b).)}

Example

\(\int_{|z|=1} \frac{10 + 9}{z^{10} - 1} \, dz = 2\pi i \sum_{j=1}^{10} = 20\pi i. \)

\(c \) \(f \in \text{Mer} (U) \implies \)

\[\int_{\gamma} \frac{f'}{g} \, dz = 2\pi i \sum_{j=1}^{\infty} W(\gamma, z_j) \text{ord}_j (f) g(z_j) \]

\text{(Proof: use (a), (b), and (c).)}

Example

\(\int_{|z|=1} \frac{10 + 9}{z^{10} - 1} g(z) \, dz = 2\pi i \sum_{j=1}^{10} g(z_j). \)

These are amazing exercises, but why do we really care about this?

Because we can use it to compute real integrals:
Example

Set $I := \int_{-\infty}^{\infty} \frac{x^2}{(x^2 + 1)^2} \, dx = \lim_{R \to \infty} \int_{-R}^{R} \frac{x}{(x^2 + 1)^2} \, dx$.

Let $f(z) := \frac{2}{(z^2 + 1)^2} \in \mathcal{M}(C \setminus \{i\})$,

and notice that

$$| \int_{C_R^+} f(z) \, dz | \leq \pi R \| f \|_{C_{R}^+} \leq \pi R \frac{R^2}{(R^2 - 1)^2} \xrightarrow{R \to \infty} 0 \text{ as } R \to \infty.$$

For $|z| = R$, $|z^2 + 1| \geq |z|^2 - 1 = R^2 - 1$.

So

$$I = \lim_{R \to \infty} \left(\int_{C_{R}^+} f(z) \, dz - \int_{C_{R}^-} f(z) \, dz \right) = \lim_{R \to \infty} \int_{C_{R}^+} f(z) \, dz$$

$$= 2\pi i \text{ Res}_1 (f).$$

To evaluate this residue we use (2) with $n = 2$:

writing $f(z) = \frac{2}{(z^2 + 1)^2} = \frac{F(z)}{(z-i)^2}$, we have

$$F'(z) = \frac{2i z^2 - 2z}{(z+i)^4} \Rightarrow F'(i) = -\frac{i}{4} \Rightarrow \text{Res}_1 (f) = \frac{F'(i)}{(z-i)!} = -\frac{i}{4}$$

$\Rightarrow I = 2\pi i \left(-\frac{i}{4} \right) = \frac{\pi}{2}$.

\[\text{Slightly more gen' condition than simple + closed} \]

Definition

Y has an interior if $W(y, x) = 0$ or 1 for every $x \in C \setminus \{y\}$, and $\text{Int}(Y) := \{ x \in C \mid W(y, x) = 1 \}$.

\[\text{for every } x \in C \]

\[\text{and } \text{Int}(Y) := \{ x \in C \mid W(y, x) = 1 \}. \]
Let $f, g \in \mathcal{M}(U)$ for some open set U containing both Y and $\text{Int}(Y)$.

Corollary of (b): If Y has an interior, then
\[
\frac{1}{2\pi i} \int_Y \frac{f'}{f} \, dz = \sum_{p \in \text{Int}(Y)} \text{ord}_p(f) = (\# \text{ of zeroes of } f \text{ inside } Y, \text{ counted }) - (\# \text{ of poles of } f \text{ inside } Y, \text{ counted }).
\]

Corollary of (c): If Y has an interior, then
\[
\frac{1}{2\pi i} \int_Y \frac{f^*}{f} \, dz = \sum_{p \in \text{Int}(Y)} \text{ord}_p(f) g(p). \quad [\text{Note that }\text{Cauchy's integral formula is a special case, with } f(g) = \varepsilon - \alpha.]
\]

III. Residues of differentials

It sometimes makes more sense to write “$d\log f$” instead of $\frac{f'(z)}{f(z)} \, dz$. (Note that this is not necessarily a derivative of some function $\log f$.) We have the obvious properties:

- $\frac{dfg}{f g} = \frac{f'}{f} + \frac{g'}{g} \Rightarrow d\log (fg) = d\log (f) + d\log (g)$.

- $d\log (1/f) = -d\log (f)$

- $d\log (f/g) = d\log (f) - d\log (g)$.

† this is locally true, but need not be globally true on U.
This goes beyond a mnemonic for logarithmic differentials rules: first, for the above "Corollary of (6)", it expresses the fact that you are recording how much \(\log(f) \) (or \(\arg(f) \)) changes around \(y \). But it also is because of the following:

FACT: Residues of \(\left\{ \text{functions ARE NOT inverted under \(\text{deformation} \)} \right\} \) \(\text{ARE} \)

local analytic isomorphism.

Here \(\text{Res}_{w_0}(F(z) \, dz) := \text{Res}_{w_0}(F(z)) \), so they appear to be exactly the same.

But now substitute \(z = z(w) = z_0 + b_1 (w-w_0)^1 \), \(h(w_0) = 0 \),

and take \(\text{Res}_{w_0} \):

\[
\begin{align*}
F(z) & \to F(z(w)) \quad \text{vs.} \quad F(z) \, dz \to F(z(w)) \, \frac{dz}{dw} \, dw \\
\text{Res}_{w_0} \left(F(z(w)) \right) & \quad \text{vs.} \quad \text{Res}_{w_0} \left(F(z(w)) \, \frac{dz}{dw} \right) = \\
& = \text{Res}_{w_0} \left(F(z(w)) \right).
\end{align*}
\]

Obviously, these can't be the same in general.

Example

\[
\begin{align*}
F(z) & = a_1 (z-z_0)^{-1}, \quad z(w) = z_0 + b_1 (w-w_0), \quad w = b_1 \\
F(z(w)) & = a_1 \, b_1^1 (w-w_0)^{-1}, \quad \text{but} \\
F(z(w)) \, \frac{dz}{dw} & = a_1 \, b_1^1 (w-w_0)^{-1} \frac{dz}{dw} = a_1 \, (w-w_0)^{-1} \quad \text{"right" \quad \text{side}.}
\end{align*}
\]
This makes sense, if we write \[\text{Res}_{z_0} \left(\frac{F(z)}{z - w} \right) = \lim_{z \to z_0} \frac{1}{2\pi i} \int_{C(z_0)} \frac{F(z)}{z - w} \, dz \]

where \(C(z_0) \) is some contour around \(z_0 \) or "\(z_0 \)". So the differential works because it transforms like the differential in the integral under \(\Delta \) of variable.

Residue at 0: Here we transform the differential into the local coordinate at 0, \(s = \frac{1}{z} \) (\(\to z = \frac{1}{s} \)):

\[f(z) \, dz = f \left(\frac{1}{s} \right) \, \frac{dz}{s^2} = -f \left(\frac{1}{s} \right) \frac{ds}{s^2}. \]

Now assume \(f \) has finitely many poles on \(C \), so that \(\exists \varepsilon > 0 \) s.t. the only pole enclosed by \(C_E \) (in \(s \)) is at \(s = 0 \) (if there even is one). Then

\[\text{Res}_{z_0} \left(f(z) \, dz \right) = \text{Res}_{s=0} \left(-f \left(\frac{1}{s} \right) \frac{ds}{s^2} \right) = \text{Res}_{s=0} \left(-f \left(\frac{1}{s} \right) \frac{ds}{s^2} \right). \]

by above defn. of Res (differential)

\[= \frac{1}{2\pi i} \left(\frac{-f \left(\frac{1}{0} \right)}{0^2} \right) \left(\frac{ds}{s^2} \right) \text{ on } C_E \]

\[= \frac{1}{2\pi i} \left(\frac{-f \left(\frac{1}{0} \right)}{0^2} \right) \left(\frac{ds}{s^2} \right) \text{ on } C_E \]

\[= \frac{-1}{2\pi i} \int_{C} f(z) \, dz \quad \text{where } R > 0 \]

(sufficiently large to enclose all poles \(q \) on \(C \)).
But then

\[\sum_{p \in S^1} \text{Res}_p(f(z)dz) = \sum_{p \in \mathbb{C}} \text{Res}_p(f(z)) + \text{Res}_{\infty}(f(z)dz) \]

\[= \frac{1}{2\pi i} \int_{C_R} f(z)dz + \left(\frac{-1}{2\pi i} \! \! \int_{C_R} f(z)dz \right) \]

\[= 0, \]

and we conclude the

Theorem \(\) The sum of the residues of a differential on \(S^1 \) is 0.