Lecture 32: More on harmonic functions

I. Fourier series

This is a nice application of the Theorem on Dirichlet's problem from Lecture 31. Moreover, it gives a better idea of what the harmonic functions of that Theorem look like.

Let $f \in C^0([0,2\pi])$, $f(0) = f(2\pi)$. The Theorem just mentioned guarantees the existence of $u \in C^0(\overline{D_1})$ satisfying:

(a) $u|_{D_1}$ is harmonic, hence of the form

$$u(re^{i\theta}) = \Re \left(\sum_{n=0}^{\infty} a_n (re^{i\theta})^n \right)$$

$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n r^n \cos(n\theta) + b_n r^n \sin(n\theta) \right)$$

Where the series are absolutely and uniformly convergent on D_r for $r < 1$

(b) $u(e^{i\theta}) = f(\theta)$.
Now using basic trigonometric integrals, (a) gives
\[
\frac{1}{\pi} \int_{0}^{2\pi} \cos(n\theta) u(re^{i\theta}) \, d\theta = a_n \, r^n
\]
\[
\frac{1}{\pi} \int_{0}^{2\pi} \sin(n\theta) u(re^{i\theta}) \, d\theta = b_n \, r^n
\]
Taking \(r \to 1 \) and using (uniform) continuity of \(u \) on \(\overline{D_1} \) together with (b),
\[
\begin{align*}
\frac{1}{\pi} \int_{0}^{2\pi} \cos(n\theta) f(\theta) \, d\theta &= a_n \\
\frac{1}{\pi} \int_{0}^{2\pi} \sin(n\theta) f(\theta) \, d\theta &= b_n
\end{align*}
\]

(*) may be regarded as the definition for Fourier coefficients of \(f \). Together with (a), this gives a formula for \(u|_{D_1} \) as a series. What about \(f \)? This is a nontrivial question, since "the series converges to \(u \) on \(D_1 \)" and "\(u \) is continuous on \(\overline{D_1} \)" do NOT imply that the series converges to \(u \) on \(\overline{D_1} \).

Since \(f \) is (uniformly) continuous, \(\forall \varepsilon > 0 \exists \delta > 0 \) s.t. \(|\theta_2 - \theta_1| < \delta \Rightarrow |f(\theta_2) - f(\theta_1)| < \frac{\varepsilon}{2} \). This means that for \(n > \frac{2\varepsilon}{\delta} \) (i.e. sufficiently large),
\[
\left| \frac{1}{\pi} \int_{\frac{2\pi}{n}}^{2\pi} f(\theta) \cos(n\theta) \, d\theta \right| = \left| \frac{1}{\pi} \int_{\frac{2\pi}{n}}^{2\pi} f_{m}(\theta) \cos(n\theta) \, d\theta \right| < \frac{1}{\pi} \cdot \frac{2\pi}{n} \cdot \frac{\epsilon}{2} = \frac{\epsilon}{n}
\]

\[
\Rightarrow \left| a_n \right| = \left| \sum_{m=0}^{n-1} \frac{1}{\pi} \int_{\frac{2\pi}{n}}^{2\pi} f(\theta) \cos(n\theta) \, d\theta \right| < \epsilon. \quad (\#\#)
\]

So \(a_n \to 0 \) as \(n \to \infty \). (Similar for \(b_n \))

But this isn't good enough for convergence, and indeed if \(S \subset [0, 2\pi] \) is any set of measure zero, then \(\exists f \in C^0([0, 2\pi]) \) whose Fourier series diverge (unboundedly!) on \(S \). A famous theorem of Carleson implies that the Fourier series at least converge pointwise almost everywhere, but still this is a bit shocking.

(A) When you first learn Fourier series from physicists who repeat the mantra that \(f \in \mathcal{C}^k \Rightarrow \lim_{n \to \infty} a_n = 0 \).

(B) In light of our theorem on Dirichlet for \(D_1 \).

The problem is that, while \(\lim_{n \to \infty} a_n \) exists, the statement amounts...
to Abel summability of the Fourier series at \(\Theta_0 \), which is weaker than ordinary summability.

To fix this, suppose now that \(f \) is everywhere differentiable, with bounded derivative (weaker than \(C^1 \)). Then if \(\|f'\|_{[0,2\pi]} \leq M \), and so if \(\varepsilon = \frac{2\pi M}{n} \) then we can take \(\delta = \frac{\varepsilon}{M} = \frac{2\pi}{n} \Rightarrow |n c_n| \leq \frac{2\pi M}{\varepsilon} \cdot \varepsilon = 2\pi M \) (same for \(b_n \)).

If \(f \) is \(C^1 \), then by parts

\[
|a_n| = \left| \frac{1}{n} \int_{0}^{2\pi} f(\theta) \cos(n\theta) \, d\theta \right| = \left| -\frac{1}{n} \int_{0}^{2\pi} f'(\theta) \sin(n\theta) \, d\theta \right| \leq \frac{\varepsilon}{n} \left[\text{same technique appl. to } f' \text{ as in the derivative of } \sin(n\theta) \right].
\]

and we conclude that \(|a_n| \to 0 \) and \(|b_n| \to 0 \).

In the first case (\(n a_n \) bounded) we can use Littlewood's theorem, in the second case (\(n a_n \to 0 \)) Titchmarsh's theorem (proved in Lecture 8), to assert that \(\Phi(n\Theta) \)

\[
f(\Theta_0) = \lim_{r \to 1^-} n(\Re e^{i\Theta_0})
\]
\[
\lim_{n \to 1} \left(\frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\theta) + b_n \sin(n\theta) \right] r^n \right)
\]
\[
= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\theta) + b_n \sin(n\theta) \right]
\]

(and that this last expression converges).

Conversely, by Abel's theorem, whenever the last expression converges, the \(\lim_{r \to 1} \) must equal \(f(\theta) \) and since the \(\lim_{r \to 1} \) gives \(u(r e^{i\theta}) = f(\theta_0) \), we have the

Theorem

Let \(f \in C^0([0, 2\pi]) \) and \(a_n, b_n \) be its Fourier coefficients. Then:

(i) Whenever \(\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\theta) + b_n \sin(n\theta) \) (the Fourier series of \(f \)) converges, it converges to \(f(\theta) \).

(ii) The Fourier series converges everywhere if \(f \) is everywhere differentiable, with bounded derivative.
II. Harmonic differentials

Though we only want to deal with 1-forms on \mathbb{C}, I'll start by putting this in a broader context:

If M is a Riemannian n-manifold, one can take an oriented orthonormal basis $\{\Theta_i\}$ for local coframes and define

$$\Theta_{i_1} \wedge \ldots \wedge \Theta_{i_k} \wedge \ast (\Theta_{i_1} \wedge \ldots \wedge \Theta_{i_k}) := \Theta_{i_1} \wedge \ldots \wedge \Theta_{i_n} \wedge \ast \Theta_{i_k} \wedge \ldots \wedge \ast \Theta_{i_1}.$$

This is called the Hodge star operator.

Presently this yields

$$dx \wedge \ast dx = dx \wedge dy \quad \Rightarrow \quad \ast dx = dy \quad \text{note} \quad \ast x = -1$$
$$dy \wedge \ast dy = dx \wedge dy \quad \Rightarrow \quad \ast dy = -dx$$

So

$$\ast (A \, dx + B \, dy) = -B \, dx + A \, dy$$
$$\ast dx = \ast (dx + i \, dy) = -i \, dx + i \, dy = -i(dx + idy) = -i \, d\bar{z}$$
$$\ast d\bar{z} = \ast (dx - i \, dy) = i \, dx + i \, dy = i(dx - idy) = i \, dz.$$

\[\ast\] that is, a basis (over C^∞ functions) for differential 1-forms in a neighborhood, which is orthonormal in the metric on the cotangent space at each point.
Hence \(i* (A dt + B d\bar{z}) = A dz - B d\bar{z} \), and in particular
\[i* A dz = A dz. \]

Now let \(\omega \) be a real 1-form:
\[\omega = c dt + b dy = A dt + B d\bar{z}, \quad c, b \text{ real-valued} \text{ functions}. \]
Suppose \(d \omega = 0 = d(\omega) \) (\(\leftrightarrow \omega \) is a harmonic differential)
Then \(\phi := \omega + i* \omega = 2A dt \) satisfies
\[d\phi = 0 = -2 \frac{\partial A}{\partial \bar{z}} d\bar{z} dt + \text{differential}, \text{ i.e. } \frac{\partial A}{\partial \bar{z}} = 0 \] (A holo. 1-form).
Since \(\omega = \bar{\omega} \Rightarrow B = \bar{A} \), we have \(\omega = \text{Re}(2A dt) \).

Conversely, taking \(\phi = 2A dt \) with \(\frac{\partial A}{\partial \bar{z}} = 0 \), write
\[\phi = \frac{1}{2} (\phi + \bar{\phi}) + i \cdot \frac{1}{2i} (\phi - \bar{\phi}) = \omega + i\eta. \text{ We have} \]
\[\text{(real 1-forms)} \]
\[0 = d\phi = d\omega + i d\eta \Rightarrow d\omega = 0 = d\eta. \]
But \(i* \phi = \phi \Rightarrow \omega + i\eta = i(\ast \omega + i\ast \eta) = -\eta + i\omega \]
\[\Rightarrow \eta = \ast \omega \]
\[\Rightarrow d(\ast \omega) = 0 \] (\(- \) \(\omega \) harmonic).

We have proved

Proposition 1 The harmonic differentials \(\omega \) are precisely the real parts of holo. differentials, with \(d\omega \) equal to the imag. part.
Now again let ω be harmonic. Using Prop. 1, $\omega = \text{Re}(f \, dz)$, if holomorphic. But if f is locally the derivative of something else analytic, say F, (This is OK "globally" in any simply-connected region in which f is defined & holomorphic.) So (locally) $\omega = \text{Re}(dF) = d(\text{Re}(F))$.

By differentiating the Cauchy-Riemann equations once, $\text{Re}(F)$ is a harmonic function. [\text{Re}(F)_x = \text{Im}(F)_y \implies \text{Re}(F)_{xx} = \text{Im}(F)_{xy}, \\
\text{Re}(F)_y = \text{Im}(F)_x \implies \text{Re}(F)_{yy} = \text{Im}(F)_{yx}; \text{ now subtract.}]

Conversely, suppose that u is harmonic and $w := du$ (locally). Using $\Delta = \partial_x \partial_y \, [\text{Helmholtz}], \; d(du) = d^2 du = 0$; and $d\omega = ddw = 0$. So ω is harmonic.

Proposition 2 The harmonic differentials are (locally) precisely the differentials of harmonic functions.

If u is a harmonic function in a region then we may define the harmonic conjugate of u as the integral of $\bar{u} du$. (Easy exercise: this agrees with the previous definition.) This both explains why harmonic conjugates aren't well-defined in general in multiply-connected regions, and illustrates...
Why the differential form point of view is better!

If \(u_1, u_2 \in \mathcal{H}(U) \) (\(U \) any region in \(\mathbb{C} \)) then on any simply-connected subregion \(U_0 \), \(u_j \) has a conjugate function \(v_j \), with \(u_j + iv_j \in \mathcal{H}(U_0) \).

\[\mathcal{L}^1(U_0) \ni \tau := (u_1 + iv_1) d(u_2 + iv_2) = i f v_1 du_2 + u_1 dv_2 \] + Re(\(\eta \))

\[\Rightarrow \quad \mathcal{O} = \int_{\partial \mathcal{K}} v_1 du_2 + u_1 dv_2 \quad \forall \mathcal{K} \subset U_0 \text{ 2-chain} \]

\[\Rightarrow \quad \mathcal{O} = \int_{\partial \mathcal{K}} u_1 dv_2 - u_2 dv_1 = \int_{\partial \mathcal{K}} u_1 x du_2 - u_2 x dv_1, \]

subtract \(u_2 dx + v_1 dy = d(u_2 v_1) \) (exact 1-form)

\[\Rightarrow \quad \mathcal{O} = \int_Y u_1 x du_2 - u_2 x dv_1 \quad \forall \gamma \subset U. \quad (\#) \]

An application:

\[\{ \text{HW}\}: \{ \begin{align*}
& \ast dx = r \, d\theta \\
& \ast d\theta = -\frac{1}{r} \, dr
\end{align*} \]

If \(u \in \mathcal{H}(D_\mathbb{R}^k) \), then taking \(U = D_\mathbb{R}^k \), \(\gamma = C_{r_2} - C_{r_1} \) \((0 < r_1, r_2 < \infty) \)

we want to apply \((\#)\) to

\[u_1 = u \quad \rightarrow \quad \ast du_1 = \ast \left(\frac{\partial u}{\partial r} \, dr + \frac{\partial u}{\partial \theta} \, d\theta \right) = r \frac{\partial u}{\partial r} \, d\theta - \frac{1}{r} \frac{\partial u}{\partial \theta} \, dr \]

\[u_2 = \log(r) \quad \rightarrow \quad \ast du_2 = \frac{1}{r} \, r \, d\theta = d\theta \]

\((\in \mathcal{H}(D_\mathbb{R}^k)) \quad \text{and} \quad u_3 = 1 \quad \rightarrow \quad \ast du_3 = 0. \)
\[\Rightarrow 0 = \int_y u_1 \, dx_2 - u_2 \, dx_1, \]

\[= \int_y u \, d\theta - \log(r)\int_y x \, dx_1, \]

and

\[0 = \int_y u_3 \, dx_4 - u_2 \, dx_3, \]

\[= -\int_y x \, dx_1 \]

\[\Rightarrow \begin{cases} \int_{C_r} u \, d\theta - \log(r)\int_{C_r} x \, dx_1 & (=: \beta) \\ \int_{C_r} x \, dx_4 & (=: \lambda) \end{cases} \]

are both constant in \(r \in (0, R) \).

\[\Rightarrow \int_{C_r} u \, d\theta = \beta + \lambda \log(r) \quad (\forall r \in (0, R)) \]

which generalizes the MVT.

\[\uparrow \]

Recall MVT says that if \(u \in \mathcal{D}_R \), then \(\lambda = 0 \) and \(\beta = u(0) \).