Lecture 4: Topology of the Complex Plane

I. Topological spaces

We begin with some generalities.

Definition A topological space is a pair (X, \mathcal{S}), where X is a set (of "points"), and \mathcal{S} is a collection of subsets of X including:

(a) X itself and the empty set \emptyset
(b) finite intersections $\bigcap_{j=1}^{n} U_j$ if each $U_j \in \mathcal{S}$
(c) arbitrary unions $\bigcup_{j \in J} U_j$ if each $U_j \in \mathcal{S}$. \mathcal{S} is called a topology on X; members of \mathcal{S} are called open sets (⇔ complement is closed).
Remarks: • notation for complement of \(U \in \Sigma \) is \(U^c \) or \(X \setminus U \)

• we will frequently write "\(X \)" instead of "\((X, \Sigma)\)" for topological spaces.

Some more terminology:

• \(X \) is Hausdorff if

\[\forall \text{ distinct } x, y \in X, \exists \text{ disjoint open } U, V \in \Sigma \text{ with } \overline{U} \ni x \text{ and } \overline{V} \ni y \]

• A basis (or base) for the topology is a "generating set" \(B \subseteq \Sigma \); i.e. every \(U \in \Sigma \) is a union of elements of \(B \).

• Let \(S \subseteq X \) be a subset (not necessarily belonging to \(\Sigma \)). We denote

\[
\left(S \supseteq \right):= \{ x \in X | \exists U \in \Sigma \text{ s.t. } U \subseteq S \}
\]

\[b := \{ x \in X | \forall U \in \Sigma, \emptyset \neq \emptyset \neq U \cap S \} \]

\[\overline{S} := \{ x \in X | \forall U \in \Sigma, U \cap S \neq \emptyset \} \cap D S \]

\[\text{ acc } (S) := \{ x \in X | \forall U \in \Sigma, \forall n \geq 0 U^{(n)} \cap S \neq \emptyset \} \]
• \(S \) is connected \(\iff \) \(S \) cannot be written as the disjoint union \(U \sqcup V \) of nonempty \(U, V \in \mathcal{E} \).

Remark: Any \(S \) has a unique decomposition into connected components (\(\mathcal{E} := \) maximal connected subsets = clopen sets).

• \(S \) is compact \(\iff \) every open cover has a finite subcover: i.e.,

\[
\begin{align*}
S \subseteq \bigcup_{j \in J} U_j & \quad (\text{each } U_j \in \mathcal{E}) \\
\Downarrow \\
\exists \{J_0, J_1, \ldots, J_n\} \subseteq J \quad s.t. \quad S \subseteq \bigcup_{i=1}^{n} U_{j_i}
\end{align*}
\]

Distance.

Given a distance function

\[d: \mathbb{X} \times \mathbb{X} \to \mathbb{R}, \]

it makes sense to take as basis for \(\mathcal{E} \) the "open disks"

\[D(x_0, r) := \{ x \in \mathbb{X} \mid d(x, x_0) < r \}. \]

If \(\mathcal{E} \) is constructed in this way, the triple \((\mathbb{X}, \mathcal{E}, d)\) is called a metric space.

Properties:

- symmetric
- nonnegative
- \(d(x, y) = 0 \iff x = y \)
- \(A \) inequality
Remark: I will also use the notation
\[D(x_0, r) := \{ x \in X \mid d(x, x_0) \leq r \} \]
and \[D^*(x_0, r) := \{ x \in X \mid 0 < d(x, x_0) < r \} \].

Examples

<table>
<thead>
<tr>
<th>(X)</th>
<th>name of metric</th>
<th>(d(z_1, z_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{C})</td>
<td>Euclidean</td>
<td>(</td>
</tr>
<tr>
<td>(\mathbb{C})</td>
<td>stereographic</td>
<td>(\frac{2</td>
</tr>
<tr>
<td>(\mathbb{H})</td>
<td>Poincaré</td>
<td>(\log\left(\frac{</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>Poincaré</td>
<td>(\tanh^{-1}\left(\frac{</td>
</tr>
</tbody>
</table>
II. The complex plane

Henceforth we work on $X = \mathbb{C}$ with the Euclidean metric $d(x,y) = |x - y|$. In particular, open sets contain disks around each of their points.

Examples of subsets of \mathbb{C}

1. \[\mathbb{C}, \quad \mathbb{C} = \text{entire circle} \]
 \[\mathbb{C} = \text{shaded area} \]
 \[\text{acc} (\mathbb{C}) = \mathbb{C} = \mathbb{C} \cap \mathbb{C} \]

2. \[\mathbb{C}, \quad \mathbb{C} \]

Here $\mathbb{C} = \overline{\mathbb{C}}$ (is closed)
and $\text{acc}(\mathbb{C}) = \emptyset$
3 (upper half plane) \[\mathcal{S} = \mathbb{H} \]

\[\mathcal{S} = \mathbb{D} \quad \text{(open set)} \]

4 \[\mathcal{S} \]

\[\text{acc } (\mathcal{S}) = \{ \alpha \}, \quad \text{whether or not } \alpha \in \mathcal{S} \]

Remarks:

(i) The definition of \(\alpha \in \text{acc} (\mathcal{S}) \) says that for any \(\varepsilon > 0 \), \(D^*(\alpha, \varepsilon) \cap \mathcal{S} \) is nonempty. In effect, this means that \(D(\alpha, \varepsilon) \cap \mathcal{S} \) contains infinitely many points. For \(\mathcal{S} = \mathbb{C} \), \(\mathcal{S} \cap \text{acc} (\mathcal{S}) \subset \mathcal{S} \) but we need not have \(\text{acc} (\mathcal{S}) \subset \mathcal{S} \) or \(\mathcal{S} \leq \text{acc} (\mathcal{S}) \) (cf. Examples 2 & 4 above).
(ii) Given \(S \subseteq C \), the open subsets of \(S \) are the \(\{ S \cap U \} \) for \(U \in \Sigma \) (i.e. \(U \) open in \(C \)); the closed subsets are their complements (in \(S \)). But \(S \cap U \) (resp. \(S \setminus S \cap U \)) may not be open (resp. closed) in \(C \). In this sense, openness and closedness are relative properties. (From the form of the definition of compactness, it is clear that this is an absolute property.)

Examples:

<table>
<thead>
<tr>
<th>(R = S)</th>
<th>(C = X)</th>
<th>(h = S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(open in (R) (but not in (C))</td>
<td>(closed in (h)) (but not in (C))</td>
<td>(but not in (C))</td>
</tr>
</tbody>
</table>
III. Limits

Given $f : \mathbb{R} \to \mathbb{C}$, $x \in \mathbb{R}$ and $\beta \in \mathbb{C}$, define

$$\lim_{x \to a} f(x) = \beta \iff \forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } f(x \cap D(a, \delta)) \subseteq D(\beta, \varepsilon).$$

Now suppose $x \in \mathbb{R}$; then

f is continuous at $x \iff \lim_{x \to a} f(x) = f(x).$

A sequence $\{x_n\}$ amounts to a (continuous) function

$$f : \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \to \mathbb{C},$$

and the limit of the sequence (if it exists) is given by

$$\lim_{n \to \infty} x_n = w \iff \lim_{x \to 0} f(x) = w.$$
The accumulation points (or limit points) of the sequence are all the limits of subsequences \(\{x_k\} \). (Note that the accumulation points \(\text{acc}(\{x_n\}) \) of the set \(\{x_n\} \) may be different – e.g., for constant sequences, empty.)

A sequence is Cauchy \(\iff \) \(\forall \epsilon > 0, \exists N \in \mathbb{Z}_+ \) s.t. \(n, m \geq N \Rightarrow |x_n - x_m| < \epsilon \).

\[\Rightarrow \] the sequence converges.

(\text{since } \mathbb{C} \text{ is complete})

IV. Remarks on connectedness

Connectedness was defined in III.

Real numbers

\(I \subset \mathbb{R} \) is connected \(\iff \) \(I \) is an interval.

Consequently, any bounded-above (resp. below), nonempty subset \(S \subset \mathbb{R} \) has a least upper bound (resp. greatest lower bound), since the set

\(\dagger \) See Ahlfors
of all upper bounds for S is easily shown to be connected and closed. More precisely:

$\inf (S) := \sigma \in \mathbb{R}$ s.t. (i) $\sigma \geq$ every element of S

(always belongs to S) (ii) if $\tau \geq$ every element of S

then $\tau \geq \sigma$ as well.

Complex numbers

For $S \subseteq \mathbb{C}$, a path in S is a continuous function $f : [0, 1] \to \mathbb{C}$, and the important thing to remember is:

Proposition Assume $S \subseteq \mathbb{C}$ open. Then

S is connected \iff S is pathwise connected.

(i.e. $\forall \alpha, \beta \in S$ \exists path with $f(0) = \alpha$, $f(1) = \beta$)

Proof (idea):

$->$ $S_0 \subseteq S$ maximal pathwise connected

$\Rightarrow S_0$ open & closed (use open ball B)

$\Rightarrow S_0$ maximal connected (so $S_0 = S$).

$<->$ If $S = U \cup V$ and $f(0) = \alpha$, $f(1) = \beta$,

we get $f^{-1}(U) \cup f^{-1}(V) = [0, 1]$, a contradiction.

\Box
A connected open set in \(\mathbb{C} \) is called a region, and it is on such sets that we will generally want to study holomorphic functions.

V. Boundedness

We say that

\[
\mathcal{S} \subseteq \mathbb{C} \text{ is bounded } \iff |s| \leq C \in \mathbb{R}_+ \quad (\forall s \in \mathcal{S}).
\]

Theorem (Bolzano-Weierstrass)

\(\mathcal{S} \subseteq \mathbb{C} \) bounded infinite \(\implies \) \(\text{acc}(\mathcal{S}) \neq \emptyset \).

Proof: Let \(\{r_n\} \subseteq \mathbb{R} \) be a bounded sequence. We can extract either a nonincreasing or non-decreasing subsequence: if the subset of \(\{r_n\} \) consisting of “elements \(\geq \) all subsequent terms” is infinite, it gives a nonincreasing sequence.
Otherwise, one can construct a non-decreasing one. Now take g.l.b or l.u.b of that subsequence; this exists and must be its limit s.

Next let $\{s_n\} \subseteq \mathbb{R}$ be an arbitrary sequence of distinct elements (which exists as $|\mathbb{R}| = \infty$). We may extract a subsequence with convergent real part, then a sub-subsequence with convergent imaginary part (by the result for $\{u_n\}$ above). The latter $\{s_{n_k}\}$ must then not only converge to some $s \in \mathbb{C}$, but have $s \in \text{acc}(\{s_{n_k}\}) \leq \text{acc}(\mathbb{R})$ since all the s_{n_k} are distinct.

Theorem

Let $K \subseteq \mathbb{C}$ be a subset.

The following are equivalent:

(i) K is compact

(ii) Any $\{z_n\} \subseteq K$ has a point of accumulation in K (equivalently: a convergent subsequence with limits in K)

(iii) K is closed and bounded
Proof: $(ii) \Rightarrow (i)$: HW

$(iii) \Rightarrow (ii)$: see proof of Bolzano-Weierstrass

$(i) \Rightarrow (iii)$:
- **Boundedness**: take $U_n = \{ x \mid 1 < n \}$.
 - $\cup U_n = C \supset K$ ($\forall U_n$ gives open cover).
- **Compactness**: $K \subset U_n$ for some N.
- **Closedness**: Assume K not closed.
 - Take $p \in \partial K$, $\notin K$, and $U_n = \overline{B}(p, \frac{1}{n})^c$.
 - Then $\cup U_n = C \backslash \{ p \} \supset K$.
- K compact $\Rightarrow K \subset U_n$ which is false as U_n^c must (as $p \in K$) contain a point of K.

Remark: Any accumulation point of $\{ x_n \} \subset K$ compact is contained in K, since K is closed.

Theorem: Let $K \subset \mathbb{C}$ be compact, with nonempty closed nested subsets $(K_n)_{n \geq 1}$ $\supseteq \cdots$. Then $\cap K_n \neq \emptyset$.

Proof: The K_n are compact (since closed, δ inherit boundedness from K).
- For each m, choose $x_m \in K_m$; K contains an accumulation point of $\{ x_m \}$, say δ.
- This δ is an accumulation point of tails x_m, $m \geq n$ $\subseteq K_n$, hence $\cap K_n \ni \delta$ (4th). Hence $\cap K_n$ contains δ.

APPENDIX: An interesting non-Hausdorff space

A more general definition of the limit of a sequence, for arbitrary \((X, \Sigma)\), is

\[
\lim_{n \to \infty} x_n = x \iff \forall U \in \Sigma, \exists N \text{ such that } n \geq N \implies x_n \in U
\]

HW: Uniqueness of \(\lim_{n \to \infty} x_n \) is implied by Hausdorffness of \((X, \Sigma)\).

(Hence, we can show that a topological space is non-Hausdorff by exhibiting a "non-unique limit point".)

Example

Writing

\[\Delta = D(0,1), \quad \Delta^\times = D^\times(0,1), \quad \tau(s) = \frac{\log(s)}{2\pi},\]

define a lattice \(\Gamma_s \subseteq \mathbb{C}^2 \) for each \(s \in \Delta \) by

- \(s \in \Delta^\times \): \(\Gamma_s := \mathbb{Z} \langle (i, \tau(s)), (0), (1), (0) \rangle \)
- \(s = 0 \): \(\Gamma_0 := \mathbb{Z} \langle (0), (0) \rangle \).

Then \(\bigcup_{s \in \Delta} \Gamma_s \times \{s\} =: \Gamma \subseteq \mathbb{C}^2 \times \Delta \)

is reasonably nice (e.g. union of smooth submanifolds),
but
\[\overline{X} := \frac{C^2 \times \Delta}{\Gamma} \]
use quotient topology
is non-Hausdorff

Proof (sketch): Let \(a \in \mathbb{Z}\setminus\{0\} \), \(b \in \mathbb{C} \), and
note that for \(s_n := e^{2\pi i (b + ni)/a} \),
\[\lim_{n \to \infty} s_n = 0. \]
Consider
\[v_n := a \left(\frac{1}{\lambda s_n} \right) - n \left(\frac{i}{b} \right) = \left(\frac{a}{b} \right). \]
\(\in \Gamma_{s_n} \)
Then
\[(v_n, s_n) \equiv (0, s_n) \mod \Gamma_{s_n} \]
\[\downarrow \]
\[(\in C^2 \times \Delta) \]
\[\downarrow \]
\[((a), s_n) \equiv ((b), s_n) \mod \Gamma_{s_0} \]
\[\left\langle \text{limits distinct in } \mathbb{R} \right\rangle !!!! \]