Lecture 2: Riemann Mapping Theorem

Here we three key results to bear in mind while reading these notes; U denotes a region. <u>Montel</u>: Ji = Hol(U)] = It normal: for any sequence withomly bounded for a subsequence if Jul without unsegnet an <u>ell</u> compact subserve of U. <u>Hurmita</u>: Given Iffn) C Hol(U) normally conversity to f, with each fin northere zero on U, either • f is northere zero on U.

Schwarz: Given
$$f \in Hol(D_1)$$
, $f(D_1) \subset D_1$, $f(0)=0$.
Then $|f'(0)| \leq 1$, and if $|f'(0)| = 1$ then f is a rotation
 $(= f(0) \cdot 2)$. Thuse one the only conformed automorphisms
friency 0 , and so one can say (with the done assumptions on f)
 $|f'(0)| = 1 \quad (=) \quad f(C \operatorname{Aut}(D_1)).$

I. The statement
Throughout this lecture, R denotes a simply connected
region
$$\subset \mathbb{C}$$
 which is not all \mathcal{G} .
RMT \mathcal{R} is biholomorphic to $\mathcal{D}_{\mathcal{I}}$.
RMT \mathcal{R} is biholomorphic to $\mathcal{D}_{\mathcal{I}}$.
Corolling Given $2o \in \mathcal{D}_{\mathcal{I}}$, there exists a unique
function $f \in Hol(\mathcal{R})$ such that
• $f(2o) = \mathcal{D}$
• $f'(2o) \in \mathbb{R}_{+}$
• $f \text{ is } 1-to-1$
• $f \text{ is } 1-to-1$
• $f \text{ is } 1-to-1$
• $f \text{ is } onto the unit disk : $f(\mathcal{R}) = \mathcal{D}_{\mathcal{I}}$.
Proof of Core (assume RMT).
Kill diso write $\tilde{\mathcal{G}}_{\mathcal{L}}(2) := \frac{\alpha-\alpha}{1-\alpha}$.$

For iniquenes, suppose
$$f \notin g$$
 are two such fingtons.
Then fog⁻¹ is a holomorphic advance philan of D_1
hence must be f the form $e^{ig} \cdot \frac{2-5}{1-5+}$. Now,
 $I-5+$
 $f_{1}g: 2_0 \mapsto 0 \implies (f \circ g^{-1})(o) = 0$
 $\implies f=0$
 $\implies (f \circ g^{-1})(2) = e^{ig} \epsilon$.
But $(f \circ g^{-1})'(e) = f'(g^{-1}(o))/g'(g^{-1}(o)) = f'(e_0)/g'(e_0) > 0$
 $\implies e^{ig} = 1$.
So $(f \circ g^{-1})(2) = 2$, i.e. $f \circ g^{-1} = id p_1 \implies f = g$.
When not $C \cong D_1$? (Certainly $2 \mapsto \frac{2}{1+|2|}$ shows
that $C \stackrel{e}{\Longrightarrow} D_1 \cdot)$ Answer: Linuville.

The fact that Schwarz enders above is interesting,
because the idea of the proof of RMT itself comes
from the Schwarz Lemma: for
$$f:D_1 \rightarrow D_2$$
 hold. with $f(oldo)$,
 f is bijective
(hance a conformal
equivalence) \Longrightarrow $[f'(ol)]$ is as
large as possible.

Griven 206 Sl, consider helomorphic functions $f: R \rightarrow D_1$ such that $f(z_0) = 0$ and $|f'(z_0)|$ is "maximal". Maybe this gives our bihelemorphism !? But two questions immediately arise :

• Is the set of possible
$$|f'(e_0)|$$
 even bounded?

$$\begin{cases}
\frac{Y_{e_0}}{1}: \text{ for some } r, \quad \overline{D}(e_0, r) < \mathcal{J} = 0 \\
\frac{1}{1}f'(e_0)| = \frac{1}{2\pi} \left| \int_{\partial D} \frac{f(e_0)}{(e_0 - e_0)^2} d_2 \right| \leq \frac{2\pi r}{2\pi} \frac{||f||_{\partial D}}{r^2} \leq \frac{1}{r}.
\end{cases}$$

• Is the <u>least</u> upper band <u>obtained</u> by some function, or is the ser of possible balues |f'(to)| "not closed at the top"?

II. The first proof Write $Hol(U,V) := \{F \in Hol(U) \mid f(U) \subset V\}$. Lemma 1: Given PEUCE open, Fr - Hal (U,D,) nonempty fanily of functions all serving P+> 0. Then there exerts on for flool (U, D,) which is the normal limit of fifil of in, and which satisfies [t,(b)] > [t,(b)] (A t ∈ ↓). $\frac{Prof:}{Set} := \sup \{|f'(P)| \mid f \in \mathcal{F}\}, uhida$ Crists by the bracketed argument on the last page. By the definition of sup/Inb,]{f;}= I with |f'(P) | → >. But {f;} bended by 1 => ∋ {f.} Converging normally, here to fo ∈ Hol(U). Now $\left| f_{j_{k}}'(P) - f_{0}'(P) \right| = \frac{1}{2\pi} \left| \oint_{3D(P, r)} \frac{-f_{j_{k}}(z) - f_{0}(z)}{(z - P)^{2}} dz \right|$ $\leq \frac{1}{r} \|f_{jk} - f_{o}\|_{30} (P, -1)$ (k-300) $\int \int compact$

Hence
$$|f_0'(P)| = \lambda$$
. As for is a limit of functions
in $Hurl(U, D_1)$, $f_0(U) \subset \overline{D_1}$. If $\exists Q \in U$
with $|f_0(Q)| = 1$ then $MMP \Rightarrow f_0 = e^{i\Theta}$ (constant
of modulus 1). This contradicts $f_0(P) = 0$, and so
we conclude that $f_0(U) \subset \overline{D_1}$.

Now let
$$\mathcal{N}$$
 be as above, and set
 $\mathcal{T} := \left\{ f \in Hol(\mathcal{D}, \mathcal{D}_{1}) \mid f : 1 - t_{0} - 1, f(\mathcal{P}) = 0 \right\}.$
Lemma 2: $\mathcal{T}_{1} \neq \emptyset$.
Proof: $\mathcal{N} \subset \mathbb{C} \setminus \{ d \} \implies \mathcal{J}(d) := d - d \text{ is nonline dark
 $\mathcal{N} = \mathcal{N} \cap \mathcal{N} \cap \mathbb{C} \setminus \{ d \} \implies \mathcal{J}(d) := d - d \text{ is nonline dark
 $\mathcal{N} = \mathcal{N} \cap \mathcal{N} \cap \mathbb{C} \cap \mathbb{C} \setminus \{ d \} \implies \mathcal{J}(d) := d - d \text{ is nonline dark
 $\mathcal{N} = \mathcal{N} \cap \mathcal{N} \cap \mathbb{C} \cap \mathbb{C}$$$$

More explicitly,
$$f(lz) + \beta$$
 has inequalished the rodish D_r ,
so $\frac{2}{r}(H(z_1) + \beta)$ has image addide $\overline{D_1}$, and
 $f(z_1) := \frac{r}{2(H(z_1) + \beta)}$ maps of into D_1 . This
is $1 - t_0 - 1$ (because composition of $1 - 1$ with FLT)
and composing f with $\beta_{f(P)}$ (to such $f(P)$ to 0) ensures
that $F_{5} = \phi_{f(P)} \circ f$ sould $P_{PP} \circ 0$. So $F \in \mathcal{F}_r$.
First Proof of RNT: It with suffice to show
(a) $\mathcal{F}_r \neq \phi$
(b) $\overline{J} f_0 \in \mathcal{F}$ s.t. $|f_0'(P)| = \sup_{h \in \mathcal{F}_r} |h'(P)|$
(c) if $g \in \mathcal{F}_r$ has $|g'(P)| = \sup_{h \in \mathcal{F}_r} |h'(P)|$, thun $g(D) = D_1$.
(a) done (lumne 2)
(b) We only need to check that the "fo" produced
by lamme 1 is $1 - 1$.
Let $\beta \in \mathcal{S}_r$ col lumbe of
 $g_1'(z_1) := f_1(z_1) - f_1'(\beta_1) \in Hal(Q \setminus \mathcal{F}_r^{p_1})$;
 $f_1' 1 - 1 \implies g_1'$ is norther 0 . Now Humitz

$$\Rightarrow the normal limit of the [si] (normely, fo(2)-fo(p))
is either nowher 0 or identically 0. Support the
letter : $f_0(2) \equiv f_0(p)$ (constant) =>
 $0 = |f_0'(P)| = sup [h'(P)]| h \in F_1$,
Letter 2
which means that $h'(P) = 0$ ($\forall h \in F \neq p$),
contradicting that each h is $1-1$.
Therefore $f_0(2) - f_0(p)$ must be norther 0
on $\Omega \setminus fp$, meaning $f_0(2) \neq f_0(p)$ don $2 \neq \beta$.
Since p was orbitrary, f_0 is $1-to-1$.
(c) Take $g \in F$ with maximal $|g'(P)|$.
Let $Q \in D_1$ be such that $Q \notin g(\Omega)$.
(We are after a contradiction - i.e.
to construct some $p \in F$ with bigger $|p'(P)|$.)
Set $g'(2) := \frac{g(2) - Q}{1 - Q \cdot g(2)}$. This is shill $1-1$,
with $g'(\Omega) \subset D_1$, and nordine venishing to boot.
Together with the fact that Ω is simply conn.,
this ensures the existence of $Y \notin full(M)$ with
 $\Psi' = \beta$. Obviously $\Psi \notin full (it's shill nonvenishing),
so $p^{-1}$$$$

1 |

۱ ۱ ۱

ll

L

۱

ו ו ו ו

) (,

۱ ۱

1

$$p(z) := \frac{\Psi(z) - \Psi(P)}{1 - \Psi(P)},$$
which does below to \overline{r} .
Actually, $ht's "represe"$ this construction in
terms of
 $\oint_Q(z) = \frac{z - Q}{1 - \overline{Q} \cdot z}, \quad \oint_{M(P)}(z) = \frac{z - \Psi(P)}{1 - M(P) \cdot z}, \text{ and } S(z) = z^{-1}:$
 $p = \oint_{M(P)} \circ \Psi \implies \oint_{T(P)} \circ p = \Psi \implies$
 $S \circ \oint_{\Psi(P)} \circ p = S \circ \Psi = \Psi^2 = \varphi = \oint_Q \circ g.$
So $g = \oint_Q^{-1} \circ S \circ \oint_{\Psi(P)} \circ p = i h \circ p, \quad vhenchologies (because 4 S),$
 $h: D_1 \rightarrow D_1 \quad \text{is not an automorphism (because 4 S),}$
 $h + ibus O = M(P) = M(P)^2 \cdot g(P) = -Q \mapsto O.$
 $f_{W(P)} = |h'(O)| \cdot |p'(P)| < |p'(P)|,$
(contradiction merimeting of $|g'(P)|.$

. . . .

1 1 1

| | |

l l

> ۱ ۱

I

۲ ۱ ۱

Appendix:
For reference, here is a proof of
Hornift's Theorem Left
$$f_n \in Hol(U)$$
, with $f_n \rightarrow f$
Uniforming on comparer subsets. If $(Varn) f_n$ is
never 0 on U, then either $f \equiv 0$ or f is never
O on U.
Proof: Assume $f \neq 0$. Given any $e_0 \in U$,
 $\exists e \ge 0$ sith $f(e) \neq 0$ for $d \in D^{+}(de_0,e)(e U)$.
(This is because because of holomorphic functions are isolated.)
Set $f := \min_{d \in D} |f(e_0)|$; then for $n \ge 0$
 $\|f_n - f\|_{D(e_0,e)} = \|\frac{f - f_n}{f_n f_n}\|_{D} \leq \frac{\|f - f_n\|_{D}}{\frac{1}{2}n^2} (n \Rightarrow n) \circ$.
But we also know that $f_n' \rightarrow f'$ uniformly on compart sets,
so $\||f_n' - f'\|_{D} \rightarrow 0$ and $\|\frac{f_n'}{f_n} - \frac{f'}{f}\|_{D} \rightarrow 0$, and
 $2\pi i N(f, D) = \oint_{D} \frac{f'}{f} de = \lim_{n \to \infty} \frac{f_n'}{f_n} de = \lim_{n \to \infty} 2\pi i N(f_n, 2d)$
(# of earlier of $f_n \rightarrow D$)
So f has no zero of t_0 .