Lecture 3: Extension to the boundary

The potential ugliness of the boundary of a simply-connected region \(\Omega \subseteq \mathbb{C} \) was historically a major obstacle to the late 19th century attempts (via "Dirichlet Principle"/potential theory) to prove the full RMT.

What we’ll discuss today are situations in which the map \(f: \Omega \rightarrow D_1 \) produced by RMT admits a continuous resp. analytic extension to the closure \(\overline{\Omega} \) (or part of it).

At the end I’ll give one more proof of the Riemann Mapping Theorem itself, one with a more constructive & dynamical flavor. For reference, recall the statement:

\[
\text{RMT: For } \Omega \subseteq \mathbb{C} \text{ a simply connected region, there exists a biholomorphic mapping } f: \Omega \rightarrow D_1.
\]
I. A topological result

Let $R, R' \subseteq \mathbb{C}$ be regions.

Definition A sequence $\{z_n\} \subseteq R$ (resp. path $Y : [0,1] \to R$)

is said to **approach the boundary of R iff** for each compact $K \subseteq R$ there exists $N \in \mathbb{N}$ (resp. $\epsilon > 0$) such that $\{z_n\}_{n \geq N} \subseteq R \setminus K$ (resp. $Y((1-\epsilon, 1)) \subseteq R \setminus K$).

Proposition Let $F : R \to R'$ be a homeomorphism, and $\{z_n\}$ (or $Y(t)$) $\to \partial R$. Then $\{F(z_n)\}$ (or $F(Y(t))$) $\to \partial R'$.

Proof: Let $K' \subseteq R'$ be compact. Since F is a homeomorphism, $F^{-1}(K')$ is compact.

But then some tail of $\{z_n\}$ or $Y(t)$ stays outside $F^{-1}(K')$, and so the corresponding tail of $\{F(z_n)\}$ or $F(Y(t))$ avoids K'.
II. Extension via Schwarz reflection

Let \mathcal{D} be as in the RMT.

Definition. An analytic arc is a map
\[\gamma : (a, b) \rightarrow \mathbb{C} \]
which is 1-to-1 and real-analytic, with γ' nowhere 0.
[As usual we shall write γ for the image as well.]

(5) A (free, one-sided) analytic boundary arc of \mathcal{D} is an analytic arc $\gamma \subset \partial \mathcal{D}$ with (complex-) analytic extension
\[\tilde{\gamma} : \Delta \rightarrow \mathbb{C} \]
where:
- $\Delta \subset \mathbb{C}$ is open simply-connected, with $\Delta \cap \mathbb{R} = (a, b)$
- Δ is symmetric under complex conjugation
- $\tilde{\gamma}^{-1}(\mathbb{R}) = \Delta \cap \mathbb{R}$.

Note that the extension $\tilde{\gamma}$ is unique, and defined by the same power-series defining γ.

Now let $f : \mathcal{D} \rightarrow D_1$ be as in the RMT.

Theorem. If $\gamma \subset \partial \mathcal{D}$ is an analytic boundary arc, there is an extension $f \in Hol(\mathbb{R} \cup \gamma)$ with $f \mid \gamma$ an analytic boundary arc of ∂D_1.
Proof: We assume \(\tilde{y}' \) nowhere 0

- \(\tilde{y} \) 1-to-1

by shrinking \(\Delta \), so that \(\tilde{y} : \Delta \rightarrow \tilde{y}(\Delta) \) is a conformal isomorphism. It will suffice to extend

\[
F := f \circ (\tilde{y} |_{\Delta \cap \mathbb{R}}) \in \text{Hol}(\Delta \cap \mathbb{R})
\]

to \(\tilde{F} \in \text{Hol}(\Delta) \), since

\[
\tilde{f} := \tilde{F} \circ \tilde{y}^{-1} \in \text{Hol}(\tilde{y}(\Delta))
\]

then agrees with \(f \) on \(\tilde{y}(\Delta \cap \mathbb{R}) \).

Shrinking \(\Delta \) further if necessary, we may assume 0 \(\notin F(\Delta \cap \mathbb{R}) \), so that \(i \log F \) is defined on \(\Delta \cap \mathbb{R} \). Since for any \(\{z_j\} \subset \Delta \cap \mathbb{R} \) approaching \(\mathbb{R} \) we have \(F(z_j) \rightarrow 2\pi i \) by the Proposition above (9.I),

\[
\text{Im} \ (i \log F(z_j)) = \log |F(z_j)| \rightarrow 0.
\]

By Schwarz reflection, we may extend \(i \log F(z) \)

- by its limit on \((a, b) = \Delta \cap \mathbb{R})
- by \(i \log F(\overline{z}) \) on \(\Delta \cap (-\infty, a) \)

to a holomorphic function on \(\Delta \). Taking \(\exp(-i(\cdot)) \)

yields the extension of \(F \) itself (which satisfies \(i \log F(z) = -i \log F(\overline{z}) = i \log \left(\frac{1}{F(\overline{z})} \right) \Rightarrow F(z) = \overline{F(\overline{z})} \)).
It remains to check that \(f \circ y = \tilde{F}\big|_{y(a)} \) is 1-to-1.

If \(\tilde{F}'(x_0) = 0 \) for any \(x_0 \in (a,b) \), then \(\tilde{F} \) would have to map not just \(x_0 \) but curves with tangent \(x_0 + ie^{in\pi} \) (for some \(n \geq 2 \)) to \(\partial D_2 \), impossible since \(\tilde{F}(\Delta n h) \cap \partial D_1 = \emptyset \) (and such curves would intersect \(\Delta n h \)). But if \(\tilde{F}'(x_0) \neq 0 \), then

\[
0 > \frac{\partial \log|\tilde{F}|}{\partial y} \bigg|_{x_0} = -\frac{\partial \log \tilde{F}}{\partial x} \bigg|_{x_0} \quad \text{ca. eqs.}
\]

\(\tilde{F}\big|_{y(a)} \) maps strictly counterclockwise in \(\partial D_1 \) as \(x \) increases, hence is 1-to-1.

Note: If you forgot about Schwarz reflection, it's on pp. 172-3 of Ahlfors.
III. Caratheodory's Theorem

The next result concerns the case where the boundary of Ω is a continuous Jordan curve; i.e.
there is a C^0 map

$$\gamma: \mathbb{S}^1 \to \partial \Omega$$

that is 1-1 onto, hence a homeomorphism. (\mathbb{S}^1 is taken to be the bounded component of $\mathbb{C} \setminus \gamma(\mathbb{S}^1)$, and is a bounded, simply connected region.)

Theorem Let $\varphi: D_1 \to \Omega$ be a conformal isomorphism, with Ω as above (bounded, simply-connected region, with $\partial \Omega$ C^0 Jordan). Then there exists $\Phi: \overline{D}_1 \to \overline{\Omega}$ C^0 and 1-to-1, such that $\varphi|_{D_1} = \Phi|_{D_1}$ — that is, φ admits an extension to a homeomorphism of the (compact) closures.

The proof is long and is deferred to Lecture 4.

An obvious corollary of this Theorem (together with RMT) is that for Ω_1, Ω_2, Jordan-curve-boundary regions, \exists homeomorphism $\overline{\Omega}_1 \cong \overline{\Omega}_2$ restricting to a conformal isomorphism $\Omega_1 \cong \Omega_2$.
IV. The second proof of RMT

We can construct approximate mappings of a bounded simply-connected region \(R \) into \(D_1 \) in the sense of the following

Lemma (Caratheodory): \(\exists \{ f_n \} \subset \text{Hol}(R, D_1) \) s.t.

1. \(f_n(P) = 0 \) (for some fixed \(P \in \mathcal{R} \))
2. \(f_n(z) \) maps \(\mathcal{R} \) to a region \(\mathcal{R}_n \) in 1-1 fashion, with \(D_{r_n} \subset \mathcal{R}_n \subset D_1 \) (\(r_n \in (0,1) \)).
3. \(r_n \to 1 \) as \(n \to \infty \).

Somewhat heuristic Proof: Take \(\mathcal{R}_0 = \mathcal{R} \), and define \(\mathcal{R}_1 := f_1(\mathcal{R}_0) \), where \(f_1(z) := \kappa \cdot (z - P) \) translates & dilates \(\mathcal{R}_0 \) to fit it inside \(D_1 \). Let \(r_1 := \text{radius of the largest } D_r \subset \mathcal{R}_1 \).

Some \(z_1 \in \partial D_{r_1} \) is not in \(\mathcal{R}_1 \) (since \(\mathcal{R}_1^c \) is closed and \(d(\mathcal{R}_1^c, \partial D_{r_1}) = 0 \)).

Now inductively define, given \(\{ z_n \in \partial \mathcal{R}_n \} \),
\[
\phi_{n+1} = \left(\phi_{n+1} \circ S^{-1} \circ \phi_n \right) \circ \phi_n.
\]

geometrically, \(\phi_{n+1} \circ S^{-1} \circ \phi_n \) pushes the point \(\mathbf{z}_n \) on the boundary of \(D_n \) to \(0 \), takes square root, and pushes \(0 \) out again, to a point at distance \(r_n^{1/2} \) from \(0 \) (i.e. farther out). The circle of radius \(r_n \) is mapped to a lemniscate (Witch of Agnesi) of smallest radius \(= R(r_n) \), and clearly this is a lower bound for \(r_{n+1} \).

To compute \(r_{n+1} \), it is enough to consider
\[
\phi_{n+1}^{-1} \circ S^{-1} \circ \phi_n,
\]
which sends
\[
\mathbf{z}_n \rightarrow 0 \rightarrow \mathbf{z}_n \rightarrow -R(r_n) \rightarrow \sqrt{r_n},
\]
(\textit{It's up to you to check that the closest point indeed has phase } \pi \text{.)}
We have
\[
\sqrt{\frac{v_n(1-e^{i\theta})}{1-v_n e^{i\theta}}} = \frac{\sqrt{v_n} - R(v_n) e^{i\theta}}{1 - \sqrt{v_n} R(v_n) e^{i\theta}}
\]

\Rightarrow \sqrt{\frac{2v_n}{1+v_n^2}} = \frac{\sqrt{v_n} + R(v_n)}{1+\sqrt{v_n} R(v_n)}

\Rightarrow R(v_n) = \frac{\sqrt{v_n} (v_n-1) + \sqrt{2v_n(1+v_n^2)}}{1+v_n} \quad (\leq r_m).

(The point is that if the \(r_n \)-disk is contained in \(A_n \), then the lemniscate I drew has to be in \(R_{nm} \).)

So... locally at 0, \(R(r) \) has dominant term \((\sqrt{2}-1)\sqrt{r} (> r)\); thus for small \(r \) the function \(R(r) \) is increasing fast. Further, solving
\[
r = \frac{\sqrt{v_n} (v_n-1) + \sqrt{2v_n(1+v_n^2)}}{1+v_n}
\]
leads to \(r (v_n^2-1) (v_n-1)^{1/2} < 0 \)

meaning the graph of \(R \) looks like

\begin{center}
\includegraphics[width=0.5\textwidth]{graph.png}
\end{center}

so clearly \(r_n < R(v_n) \leq r_m \leq 1 \)

and \(r_n \to 1 \).
SECOND PROOF of RMT: We'll do this for bounded simply-connected \(S \) — obviously enough (cf. the proof of Lemma 2 in Lecture 2):

- The \(\{f_n\} \) produced by the lemma are uniformly bounded by 1; and so by Montel, some subsequence converges uniformly on (all) compact subsets. Since the limit function \(f \) is (in any such set) a uniform limit of analytic functions, it must be analytic. Furthermore, \(f(0) = 0 \).

- The same argument as in the 1st proof shows \(f \) is 1-1.

- So (as before) we must check \(f \) is onto \(D_1 \). This goes a little differently.

Take any \(w_0 \in D_1 \); \(w_0 \) lies in \(D_{1-\epsilon} \) for some \(\epsilon > 0 \). We may assume \(S \) is bounded and obtain that the limit \(F \) of \(\{f_n^{-1} \mid n \geq N\} \) (choose \(N \) s.t. \(r_N \geq 1-\epsilon \)) on \(D_{1-\epsilon} \) is analytic and 1-1 (by taking a subsequence and applying Montel and Hurwitz as above). Consider the compact subset \(F(D(w_0, \epsilon)) = \overline{V} \); since \(F \) is 1-1, the interior \(F(D(w_0, \epsilon)) \) is a neighborhood of \(F(w_0) \) (with compact closure \(\subset S \)), and
So contains all \(\{ f^{-n}(w_0) \} \) for \(n \geq M \geq N \). Also \(f \) is \(C^0 \) on some large image of \(I \).

The \(\{ f_n \} \) converge uniformly on the compact closure (and are continuous there), so that we may write

\[
W_0 = \lim_{n \to \infty} \left(f_n \circ f_n^{-1} \right)(w_0) = \lim_{n \to \infty} \lim_{m \to \infty} \left(f_n \circ f_m^{-1} \right)(w_0)
\]

\[
= \lim_{n \to \infty} f_n \left(\lim_{m \to \infty} f_m^{-1}(w_0) \right) = \lim_{n \to \infty} f_n \left(f(w_0) \right) = f(F(w_0)) = f(W_0)
\]

So that indeed \(f \) hits \(W_0 \).