Lecture 5: Harmonic functions revisited

We now want to take aim at the general Dirichlet problem, solved last term for a disk. To that end, we need a more in-depth understanding of harmonic (and "subharmonic") functions.

I. The mean-value property

Let \(U \) be a domain, \(u: U \rightarrow \mathbb{R} \) a continuous function. Recall that

\[
\text{\(u \in \mathcal{H}(U) \Leftrightarrow u \in C^2_{\mathbb{R}}(U) \) and \(\Delta u \equiv 0 \).}
\]

\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 4 \pi \xi \frac{\partial^2 u}{\partial z^2}\]

Definition \(u \) has the SCMVP \(\Leftrightarrow \)

\[\forall z_0 \in U, \exists \xi \in (0, d(z_0, U^c)) \text{ s.t.} \]
\[
u(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} u(z_0 + \xi e^{i\theta}) d\theta \quad \forall \xi \in (0, \varepsilon).
\]
Notice that if $V \subseteq U$ is a subregion,

\[(*) \quad u \text{ has SCMVP on } U \implies u \text{ has SCMVP on } V. \]

Last term we proved the mean-value theorem for harmonic functions:

MVT \[u \in \mathcal{H}(U) \implies u \text{ has SCMVP.} \]

Sketch: on a sufficiently small disk $D = D(z_0, r)$

\[f \in \mathcal{H}(D) \text{ s.t. } \text{Re}(f) = u. \text{ Then} \]

\[f(z_0) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(z)}{z - z_0} \, dz = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})}{re^{i\theta}} \, rie^{i\theta} \, \text{d}\theta \]

\[= \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) \, d\theta \]

And we can take Re of both sides.

It turns out that the converse is also true!

TVM \[u \text{ has SCMVP } \implies u \in \mathcal{H}(U). \]

Philosophically, and in terms of how we'll use it, this is a bit like a Morera theorem for harmonic functions. For the proof, we'll need a maximum principle for functions with the SCMVP.
Lemma: Given \(v \in C^0_{kr}(V) \) (\(V \) a region) satisfying SCMVP, and \(p \in V \) s.t. \(v(p) = \sup_{x \in V} v(x) \), we have \(v \equiv \text{Constant} \).

Proof: Set \(\mu := \sup_{x \in V} v(x) \), \(M := \{ x \in V \mid v(x) = \mu \} \).

Clearly, \(p \in M \) (\(\Rightarrow M \neq \emptyset \)). Given \(\{ x_i \} \subset M \) with \(\lim x_i = x_0 \in V \), \(n \in C^0 \Rightarrow (p = \lim x_i) \lim v(x_i) = v(x_0) \Rightarrow x_0 \in M \Rightarrow M \) closed in \(V \).

So if \(M \) is open, then \(M = V \). Consider \(p \in M \); then \(\exists \varepsilon \in (0, d(p, V^c)) \) s.t.

\[
\mu = v(p) = \frac{1}{2\pi} \int_{0}^{2\pi} v(p + r e^{i\theta}) \, d\theta \leq \frac{1}{2\pi} \int_{0}^{2\pi} \mu \, d\theta = \mu \quad (\forall \varepsilon \in (0, \varepsilon))
\]

\(\Rightarrow v(p + r e^{i\theta}) = \mu \quad (\forall \theta, r) \Rightarrow D(p, \varepsilon) \subset M \).

So \(M = V \) and \(v \equiv \mu \) is constant.

Proof of "TVM": Given \(\overline{D} = \overline{D(\zeta_0, \varepsilon)} \subset U \), by the solution to Dirichlet in a disk,

\[
\exists \tilde{u} \in C^0(\overline{D}) \text{ s.t. } \begin{cases} \tilde{u} \in X(D) \\ \tilde{u}|_{\partial D} = u|_{\partial D} \end{cases}
\]

Consider \(v := u - \tilde{u} \in C^0(\overline{D}) \); clearly \(v|_{\partial D} \equiv 0 \),
and \(u \) satisfies the SCMV on \(D \) (using MVT on \(\cdot \)).

Now the Lemma \(\Rightarrow \) if \(u \) attains maximum in \(D \), then \(u \) constant (since identically \(0 \), since \(C^0 \) and zero on boundary).

So either \(u \equiv 0 \) or \(u < 0 \) in \(D \) \(\Rightarrow \) \(u \leq 0 \) in \(D \).

Apply the same argument to \(-u \) \(\Rightarrow \) \(-u \leq 0 \) in \(D \).

So \(u \equiv 0 \) \(\Rightarrow \) \(u = u^\circ \) \(\Rightarrow \) \(u_0 \in C^0(\partial D) \).

Since \(D \) was arbitrary, \(u \in H(U) \).

Corollary: Given \(\{u_j\} \subset H(U) \) converging uniformly on compact subsets of \(U \) to \(u : U \rightarrow \mathbb{R} \), we have \(u \in H(U) \).

Proof: Since \(\{u_j\} \subset C^0(U) \), \(u \) is \(C^0 \). Given

\[
\overline{D} = \overline{D}(2r, r) \subset U, \text{ by MVT}
\]

\[
u_j (2r) = \frac{1}{2\pi} \int_0^{2\pi} u_j (2r + re^{i\theta}) \, d\theta
\]

\[
u (2r) = \frac{1}{2\pi} \int_0^{2\pi} u (2r + re^{i\theta}) \, d\theta
\]

\(\Rightarrow \) \(u \) has SCMV \(\Rightarrow \) \(u \in H(U) \).
II. Harnack's principle

Recall the problem from last term's final exam:

Given $u \in H(D_1)$, $u \geq 0$, $u(0) = 1$, prove that $\frac{1}{4} \leq u(\frac{3}{4}) \leq 7$.

This is a special case of

Harnack's inequality (1884)

Let $u \in H(D_R)$ be nonnegative, $z \in D_R$. Then

\[
\frac{R-1|z|}{R+1|z|} u(0) \leq u(z) \leq \frac{R+1|z|}{R-1|z|} u(0).
\]

Remark: If the disk isn't centered at the origin, an obvious corollary (just by shifting everything) is

\[
\frac{R-|z|-2|z|}{R+|z|-2|z|} u(0) \leq u(z) \leq \frac{R+|z|-2|z|}{R-|z|-2|z|} u(0).
\]

Proof: The Poisson formula says

\[
u(z) = \frac{1}{2\pi} \int_0^{2\pi} u(Re^{i\theta}) \frac{R^2 - |z|^2}{|Re^{i\theta} - z|^2} \, d\theta.
\]

We have
\[
\frac{R^2 - |z_1|^2}{|Re^{i\theta} - z_1|^2} \leq \frac{R^2 - |z_1|^2}{(R - |z_1|)^2} = \frac{R + |z_1|}{R - |z_1|}
\]

\[
\frac{R^2 - |z_1|^2}{|Re^{i\theta} - z_1|^2} \geq \frac{R^2 - |z_1|^2}{(R + |z_1|)^2} = \frac{R - |z_1|}{R + |z_1|}.
\]

Since \(u(Re^{i\theta}) \geq 0 \), we can multiply both of these inequalities by \(\cos \theta \). So,

\[
\frac{1}{2\pi} \int_0^{2\pi} u(Re^{i\theta}) \left(\frac{R - |z_1|}{R + |z_1|} \right) d\theta \leq u(0) \leq \frac{1}{2\pi} \int_0^{2\pi} u(Re^{i\theta}) \left(\frac{R + |z_1|}{R - |z_1|} \right) d\theta.
\]

\[
\left(\frac{R - |z_1|}{R + |z_1|} \right) u(0) \leq u(0) \leq \left(\frac{R + |z_1|}{R - |z_1|} \right) u(0).
\]

Harnack's Principle (1887)

Let \(U \) be a region,

and \(\{u_j\} \subset H(U) \) a sequence with \(u_1 \leq u_2 \leq \cdots \).

Then \(u_j \to u \) uniformly on compact sets of \(U \).

OR \(\exists \nu \in H(U) \) s.t. \(u_j \to \nu \) uniformly on compact sets.

Remark: So, for example, an increasing sequence of harmonic functions with \(\{u_j(x_0)\} \) bounded for one \(x_0 \in U \), converges to a harmonic function! This seems so surprising that when Harnack told it to Felix Klein, the latter refused to accept its validity! //
Proof: Set \(U^{\text{fin}} := \{ z \in U \mid \lim u_j(z) < \infty \} \)
\[U^\infty := \{ z \in U \mid \lim u_j(z) = \infty \}. \]

First suppose \(U^\infty \neq \emptyset \): for \(p \in U^\infty \), \(\exists J \) s.t. \(u_j(p) > 0 \) for \(j \in J \). Clearly \(\exists R \) s.t. \(\overline{D}(p,R) \cap U \) and \(u_j \big|_{\overline{D}} \) (hence every \(u_j \big|_{\overline{D}} \), \(j \in J \)) is positive.

So Hölder's Inequality applies, and for \(z \in D(p,R/2) \)
\[u_j(z) \geq \frac{R-|z-p|}{R+|z-p|} u_j(p) \geq \frac{R-R/2}{R+R/2} u_j(p) = \frac{u_j(p)}{3} \to \infty \]
and \(u_j(z) \) goes uniformly to \(\infty \) on \(D(p,R/2) \).

Next suppose \(\exists q \in U \) s.t. \(u_j(q) \to 1 < \infty \), i.e. \(q \in U^{\text{fin}} \neq \emptyset \), and let \(\overline{D}(q,\delta) \subset U \). Hölder's Inequality applies to the differences which are nonnegative, so for \(z \in D(q,\delta) \)
\[0 \leq u_j(z) - u_j(q) \leq \frac{s + \frac{1}{2} - \frac{1}{4}}{s - \frac{1}{2} - \frac{1}{4}} (u_j(q) - u_j(q)) \]
\[(j \in \mathbb{N}) \]
\[\Rightarrow \text{first uniformly Cauchy in } \| \|_{D(q,\delta/2)} \]
\[\Rightarrow \{ u_j \} \text{ converges pointwise to some function } u \text{ (uniformly in } D(q,\delta/2)) \]
\[\Rightarrow u \text{ is harmonic on } D(q,\delta/2). \]

(Conduing to Thm)

Conclude thus \(U^{\text{fin}}, U^\infty \) are both open.
Moreover, clearly $U = U^\text{fin} \sqcup U^\infty$, and so U connected $\implies U^\text{fin}$ or U^∞ is empty.

Further, for $K \subset U$ compact, K is covered by a finite collection of balls $D(p, R_k)$ or $D(q, s_k)$ as above; and by uniformity of $u_j \to u_0$ on K on these balls, we get uniform convergence on K. \square
III. What is... a subharmonic function?

The "harmonic functions" on \(\mathbb{R} \) — i.e., those killed by \(\Delta = \partial_x^2 \) — are just the affine functions

\[
f(x) = ax + b.
\]

On any interval, they clearly satisfy a "maximum principle": if the maximum is achieved in the interior, then the function is constant. If we are after a larger class of functions for which this principle holds, we might consider the convex functions: given any \(a \leq b \), these functions satisfy

\[
g(tb + (1-t)a) \leq tg(b) + (1-t)g(a) \quad \forall t \in [0, 1]
\]

for any affine \(f \) with \(f(a) \geq g(a) \), \(f(b) \geq g(b) \), we have \(g(a) \leq f(x) \) \(\forall x \in [a, b] \).

This definition generalizes easily to a complex variable setting. Notice that if a convex function \(g \) is \(C^2 \), then we can take \(\Delta g = \frac{\partial^2 g}{\partial x^2} \); if this
is < 0 at any point, hence on some interval (a,b), we get a function $g_0 = g - f_0$ satisfying
\[
\Delta g_0 < 0 \quad \text{on } [a,b], \quad g_0(a) = g_0(b) = 0.
\]
This is impossible (why?), so we conclude that convex functions which are C^2 satisfy $\Delta g \geq 0$.

Now for the complex analogue, which first appeared in work of Poincaré and Hartogs, and was then systematically studied by Riesz in the 1920s. Let $U \subset \mathbb{C}$ be open, $f \in C^2(U)$.

Definition
$f \in \mathcal{H}(U)$ (f is subharmonic on U)

\[\forall z_0 \in U, \ r \in (0, \delta(z_0, U^c)), \ u \in \mathcal{H}(\overline{B}(z_0, r)) \]

satisfying $f \leq u$ on $\partial B(z_0, r)$, we have $f \leq u$ on $D(z_0, r)$.

Suppose $h \in \mathcal{H}(U)$. Is h subharmonic?? Well, let $\overline{D} = \overline{B}(z_0, r) \cap U$ and $u \in \mathcal{H}(\overline{D})$ be such that $h \leq u$ on $\partial \overline{D}$, i.e. $h - u \geq 0$ there. By the maximum
principle for harmonic functions, $h - u \leq 0$ on \overline{D}. So $H(U) \leq H(U)$.

Remark: One can define superharmonic functions $\overline{H}(U)$ by reversing the inequalities in the above definition.

The following is an analogue of the MT for subharmonic functions, and is very useful for constructing them.

Theorem Let $f \in C^0_{\overline{D}}(U)$, $U \subset \mathbb{C}$ open. Then $f \in \overline{H}(U) \iff f(p) \leq \frac{1}{2\pi} \int_{0}^{2\pi} f(p + re^{i\theta}) d\theta \quad \forall \overline{D}(p, r) \subset U$.

Proof: Suppose (\ast) holds. If $f \notin \overline{H}(U)$, then $\exists \overline{D}(\overline{z}, s) =: \overline{D}' \subset U$ and $h \in H(\overline{D}')$ s.t. $f \leq h$ on $\partial \overline{D}'$ but $f(z_0) > h(z_0)$ for some $z_0 \in \overline{D}'$. Consider $g := f - h$ on \overline{D}', so that $\{ g \leq 0 \text{ on } \partial \overline{D}' \}$ and $\{ g(z_0) > 0 \}$. Let $M = \max_{\overline{D}'}(g)$, $K = \{ z \in \overline{D}' \mid g(z) = M \} \subset \overline{D}'$. Compact.

If we $\exists k$ then $\exists z \in \partial \overline{D}(w, r)$ with $g(z) < M$. ($\text{Here } \overline{D}(w, r) \subset U$)
Since g is C^0, there is a whole arc of $\partial D(w, \epsilon)$ where $g < M$, so

$$\frac{1}{2\pi} \int_0^{2\pi} g(w + \epsilon e^{i\theta}) d\theta < M > g(w)$$

[\text{by MVT}]

$$\frac{1}{2\pi} \int_0^{2\pi} f(w + \epsilon e^{i\theta}) d\theta - h(w)$$

$$\Rightarrow f(w) \leq \frac{1}{2\pi} \int_0^{2\pi} f(w + \epsilon e^{i\theta}) d\theta < h(w) + g(w) = f(w),$$

a contradiction.

To do the converse, suppose $f \in \mathcal{H}(U)$, and fix $\overline{D}(x, r) =: \overline{D} \subset U$. Let $P: D \times D \rightarrow \mathbb{R}$ be the Poisson kernel $P(z, e^{i\theta}) = \frac{1}{2\pi} \frac{1 - |z - e^{i\theta}|^2}{|z - e^{i\theta}|^2}$ for D. Then $h(z) := \frac{1}{2\pi} \int_0^{2\pi} P(z, e^{i\theta}) \cdot \{r(z + \epsilon e^{i\theta}) + \epsilon\} d\theta$ defines a continuous function on \overline{D} which is harmonic on D.

Moreover, for any $z \in D$, $h(z) = f(z) + \epsilon > f(z)$.

By continuity of $f \upharpoonright h$, $h(z) > f(z)$ for $z \in D(z, \delta)$ for $\delta > 0$ (δ depending on ϵ) small. But then by subharmonicity, $f \leq h$ on $D(z, \delta)$, hence
\[
\mathcal{H}(\mathbb{C}) \leq \mathcal{H}(\mathbb{C}) = \{ \frac{1}{2\pi} \int_0^{2\pi} \{ f(\theta + se^{i\theta}) + \epsilon \} d\theta \mid \epsilon \geq 0 \}
\]

Take $\epsilon \to 0^+$, done.

Corollary \[\mathcal{H}(\mathbb{C}) = \mathcal{H}(\mathbb{C}) \cap \mathcal{H}(\mathbb{C}) \]

Proof: \(\leq \) is obvious. By the theorem, for every small circle we have \(f \in \mathcal{H}(\mathbb{C}) \)

\[
\mathcal{H}(\mathbb{C}) \overset{\frac{1}{2\pi} \int_0^{2\pi} f(p + r e^{i\theta}) d\theta}{\leq} \text{ and } \geq
\]

By \(\text{TVM} \), \(f \in \mathcal{H}(\mathbb{C}) \).

We'll exploit the theorem a great deal more in the next lecture.
IV. A note on Schwarz triangle function

This is about a special case of an exercise in problem set #2, concerning the map

$$F(w) = e^{i	heta} \int_0^w \frac{d\tilde{w}}{\tilde{w}^{2/3} (\tilde{w}-1)^{2/3}} + C$$

These allow an arbitrary rotation and translation.

Sending h to an equilateral triangle in a conformal equivalence. Let

$$K := \text{side length} = \left| \int_0^1 \frac{d\tilde{w}}{\tilde{w}^{2/3} (\tilde{w}-1)^{2/3}} \right|$$

We shall determine the periods of F^{-1} by repeated Schwarz reflection. (The domain for these "reflections" alternates between h and $-h$.)
• first period: \(F(w) \xrightarrow{(a)} S_6 F(w) \xrightarrow{(b)} S_3 F(w) \xrightarrow{(c)} S_6 S_3 F(w) = S_3 F(w) \)
 \(\xrightarrow{(d)} \)
 \(\sqrt{3} K_i \)
 \(= F(w) + \sqrt{3} K_i \)

(The point is that each “reflection” is also an analytic continuation of \(F^{-1} \), so the formulas prove that \(F^{-1}(w + \sqrt{3} K_i) = F^{-1}(w) \).)

• second period: \(F(w) \xrightarrow{(a)+(b)} S_3 F(w) \) (as above)
 \(\xrightarrow{\ } \)
 \(\frac{1}{(S_3 F(w) - S_3 K f_3) S_2 + K} \)
 \(= S_3 F(w) - S_3 K f_3 + K \)
 \(\xrightarrow{\ } \)
 \(\frac{(S_3 F(w) - S_3 K f_3 f_6) S_6 + K}{(S_3 F(w) - S_3 K f_3) f_6} \)
 \(= F(w) + K(1 + S_6) \)
 \(\xrightarrow{\ } \)
 \(F(w) + \sqrt{3} K e^{i\pi/6} \)

So the period lattice is
\(\Lambda = \mathbb{Z}\langle \sqrt{3} K_i, \sqrt{3} K e^{i\pi/6} \rangle \)
or, after multiplying F by the constant $\frac{1}{\sqrt{3}Ke^{i\pi/6}}$

$$\Lambda \approx \mathbb{Z}\langle 1, e^{i\pi/3} \rangle.$$

The fundamental region for \mathbb{C}/Λ is made up of 6 triangles and can be thought of either as

Topologically \mathbb{C}/Λ is a torus and is isomorphic to the quartic curve

$$y^3 = w^2(w-1)^2$$

(once you resolve its two singularities and compactify it).

This curve has an automorphism $(y, w) \mapsto (\zeta_3 y, w)$, which corresponds to the "$(\varphi)+(\psi)$" transformation above

$$F(w) \mapsto \zeta_3 F(w).$$
that is, the automorphism of C/\mathbb{L} given by

$$u \ (\text{mod} \ \mathbb{L}) \mapsto \varepsilon_3 u \ (\text{mod} \ \mathbb{L})$$

which is well-defined because $\varepsilon_3 \mathbb{L} \subseteq \mathbb{L}$. We say that C/\mathbb{L} is a curve with complex multiplication; the corresponding (elliptic) algebraic curves are used extensively in cryptography.

Summing up: we have

$$F^{-1}(u + \Lambda) = F^{-1}(u) \ \forall u \in C, \ \forall \Lambda \in \mathbb{L}$$

$\implies F^{-1}$ yields a well-defined function $C/\mathbb{L} \to \mathbb{P}^1$, and also

$$F^{-1}(\varepsilon_3 u) = F^{-1}(u).$$