Problem Set 12

- (1) Let $f: M \to N$ be a map of Riemann surfaces. In each case prove that f is constant:
 - (a) $M \cong \mathbb{P}^1$ and $N \ncong \mathbb{P}^1$
 - (b) $M \cong \mathbb{C}$ and $N \not\cong \mathbb{P}^1, \mathbb{C}, \mathbb{C}^*, \text{or } \mathbb{C}/\Lambda$.
- (2) Demonstrate that U(n) is nonabelian for $n \ge 2$.
- (3) Suppose you are given a domain $\Omega \subset \mathbb{C}^n$ and a holomorphic map $F = (f_1(\underline{z}), \ldots, f_n(\underline{z}))$ from $\Omega \hookrightarrow \mathbb{C}^n$ sending $\underline{0}$ to $\underline{0}$. Furthermore, suppose that the k-fold composition, which will in general only be defined on a smaller domain $\Omega_0 \subset \mathbb{C}^n$ about $\underline{0}$, is the identity on Ω_0 . Prove that there are local coordinates at $\underline{0}$ (in general not linear functions of z_1, \ldots, z_n) in terms of which F is a linear operator. [Hint: These will be n holomorphic functions w_1, \ldots, w_n defined on a subregion of Ω . To construct them, consider the operator $\frac{1}{|k|} \sum_{j=0}^{k-1} (F')^{-1} F$.]
- (4) Prove that (i) $\bar{\partial} \circ \bar{\partial} = 0$ and (ii) $\bar{\partial} \left(\frac{\eta(\bar{w} \bar{z})}{|w \bar{z}|^{2n}} \right) = 0.$
- (5) (i) Let $f \in Hol(\Omega)$, $\Omega \subseteq \mathbb{C}^n$, n > 1. If γ is a constant and $S := f^{-1}(\gamma) \neq \emptyset$, then prove that the level set S is not contained in any compact subset of Ω .

(ii) Using part (i), formulate and prove a version of the maximum principle for holomorphic functions of several variables. (This will be weaker than the version we did in Lecture 37 – think about the 1-variable statement that says the max is achieved at the boundary if one has a continuous extension there.)