1. \[P(z) = z - \frac{z^{n+1}}{n+1} \]

\[P'(z) = 1 - z^n \quad \text{roots} \ z_j = e^{\frac{2\pi j}{n}} \]

\[w_j = P(z_j) = z_j(1 - \frac{1}{n+1}) = \frac{n}{n+1} z_j \]

2. Examine the proof of Bloch's theorem to prove that \(L \geq \frac{1}{2^a} \).

Proof: Let \(K(r) = \max \{ |f'(z)| : |z| = r \} \) and let \(h(r) = (1 - r)K(r) \). Then \(h : [0,1] \to \mathbb{R} \) is continuous, \(h(0) = 1 \) and \(h(1) = 0 \). Let \(r_0 = \sup \{ r : h(r) = 1 \} \). Then \(h(r_0) = 1, r_0 < 1 \), and \(h(r) < 1 \) if \(r > r_0 \). Let \(\alpha \) be such that \(|\alpha| = r_0 \) and \(|f'(\alpha)| = K(r_0) \). Then

\[|f'(\alpha)| = \frac{1}{1 - r_0} \]

Now, if \(|z - \alpha| < \frac{1}{2}(1 - r_0) = \rho_0 \), \(|z| < \frac{1}{2}(1 + r_0) \). Since \(r_0 < \frac{1}{2}(1 + r_0) \), the definition of \(r_0 \) gives

\[|f'(z)| \leq K\left(\frac{1}{2}(1 + r_0) \right) \]

\[= \frac{h\left(\frac{1}{2}(1 + r_0) \right)}{1 - \frac{1}{2}(1 + r_0)} \]

\[< \frac{1}{1 - \frac{1}{2}(1 + r_0)} \]

\[= \frac{1}{\rho_0} \]

for \(|z - \alpha| < \rho_0 \). Therefore, we get

\[|f'(z) - f'(\alpha)| \leq |f'(z)| + |f'(\alpha)| < \frac{3}{2\rho_0} \]

According to Schwarz's Lemma, this implies that

\[|f'(z) - f'(\alpha)| < \frac{3|z - \alpha|}{2\rho_0^2} \]

for \(z \in B(\alpha, \rho_0) = S \). It remains to show that \(f(S) \) contains a disk of radius \(\frac{1}{2\rho_0} \). Define \(g : B(0, \rho_0) \to \mathbb{C} \) by \(g(z) = f(z + \alpha) - f(\alpha) \). Then \(g(0) = 0 \) and \(|g'(0)| = |f'(\alpha)| = \frac{1}{2\rho_0^2} \). If \(z \in B(0, \rho) \), then the line segment \(\gamma = [\alpha, z + \alpha] \) lines in \(S \). By the above we get
\[|g(z)| = \left| \int_{\gamma} f'(w)dw \right| \leq \frac{|z|}{r_0} < 1. \]

By Corollary 1 in Lecture 19 we have

\[B(0, \sigma) \subseteq g(B(0, r_0)), \]

where

\[\sigma = \frac{h_0^2 \left(\frac{1}{2\pi} \right)^2}{6} = \frac{1}{24}. \]

which translates to \(B(f(a), \frac{1}{24}) \subseteq f(S) \). Finally, this implies that \(L \geq \frac{1}{24}. \)

(3) Given \(f \in \mathcal{S} \), write \(f(z) = z + a_2(f) z^2 + a_3(f) z^3 + \cdots \).

In this way we view the \(a_n \) as functions on \(\mathcal{S} \):

\[a_n : \mathcal{S} \to \mathbb{C}, \]

\[f \mapsto a_n(f). \]

Let \(f_k \in \mathcal{S} \) be a sequence which is convergent in the

framed topology, with limit \(f \in \mathcal{S} \). To show \(a_n \)

is continuous, we must show \(\lim_{k \to \infty} a_n(f_k) = a_n(f) \).

But \(f_k \) is uniformly convergent on compact subsets of \(\mathcal{D} \),

and (say) \(\mathbb{D}_{D_{V_2}} \) is a compact subset, so

\[\lim_{k \to \infty} a_n(f_k) = \lim_{k \to \infty} \frac{1}{2\pi i} \int_{\partial D_{V_2}} \frac{f_k(z)}{z^{n+1}} \, dz. \]

\[= \frac{1}{2\pi i} \int_{\partial D_{V_2}} \lim_{k \to \infty} \frac{f_k(z)}{z^{n+1}} \, dz \]

uniformly converges

\[= \frac{1}{2\pi i} \int_{\partial D_{V_2}} \frac{f(z)}{z^{n+1}} \, dz = a_n(f), \quad \text{done}. \]
4. Let $\Omega \subseteq \mathbb{C}$ be a simply connected domain, $\alpha \in \Omega$ a point. Let $F: \Omega \rightarrow D$ be the conformal map from Ω to D with $f(\alpha) = 0$ generated by the Riemann mapping theorem. Consider the function $g(z) := F'(\alpha)(F^{-1}(z) - \alpha)$. Then g is injective, $g(0) = F'(\alpha)(\alpha - \alpha) = 0$, and
\[
g'(0) = F'(\alpha)(F^{-1})'(0) = \frac{F'(\alpha)}{F'(F^{-1}(0))} = \frac{F'(\alpha)}{F'(\alpha)} = 1,
\]
i.e. g is a schlicht function. By the Kobe $\frac{1}{4}$ theorem, $D_{\frac{1}{4}} \subset g(D)$, which implies that
\[
D_{\frac{1}{4}} \subset |F'(\alpha)| (F^{-1}(D) - \alpha) = |F'(\alpha)| (\Omega - \alpha).
\]
Thus, $|z| \leq |F'(\alpha)| |d(\alpha, \partial\Omega)|$ for all $z \in \overline{D_{\frac{1}{4}}}$. Setting $z = \frac{1}{4}$ gives
\[
\frac{1}{4d(\alpha, \partial\Omega)} \leq |F'(\alpha)|.
\]
Now consider the map $h(z) := F(d(\alpha, \partial\Omega)z + \alpha)$. Since $D(\alpha, d(\alpha, \partial\Omega)) \subset \Omega$, we have $h(D) \subset F(\Omega) = D$. Moreover, $h \in \text{Hol}(D)$ because $F \in \text{Hol}(\Omega)$ and $h(0) = F(\alpha) = 0$. Thus, the Schwarz lemma yields
\[
|h'(0)| = |d(\alpha, \partial\Omega)F'(\alpha)| \leq 1,
\]
so we have
\[
\frac{1}{4d(\alpha, \partial\Omega)} \leq |F'(\alpha)| \leq \frac{1}{d(\alpha, \partial\Omega)},
\]
as desired. \qed
(5) Write \(\mathcal{R} = \mathbb{C} \backslash \{0, \infty\} \). \(\text{RMT} \Rightarrow \exists f: \mathcal{R} \xrightarrow{\text{isom}} \mathbb{D}^* \)

sending \(\{0\} \) to \(\{0\} \), hence \(f \) restricts to \(\mathbb{C} \backslash \{1, \infty\} \xrightarrow{\text{isom}} \mathbb{D}^* \).

Were the universal cover \(\mathbb{C} \) or \(\mathbb{P}^1 \), this would result in a map from one of them to \(\mathbb{D}^* \), i.e., a bounded (hole) entire function \(\Rightarrow \) constant \(\times \).

(6) Nontrivial direction is:

\[
\mathbf{h}_{\Gamma_1} = \mathbf{h}_{\Gamma_2} \Rightarrow \Gamma_1, \Gamma_2 \leq \text{PGL}(2, \mathbb{R})
\]

(Note that \(\Gamma_1 \) are in \(\text{PGL}(2, \mathbb{R}) \) but \(\text{PGL}(2, \mathbb{R}) \cong \text{Aut}(\mathbb{H}) \).

Proof: Given an isom. \(f: \mathbf{h}_{\Gamma_1} \to \mathbf{h}_{\Gamma_2} \), have

\[
\begin{array}{ccc}
\Gamma_1 & \xrightarrow{f} & \Gamma_2 \\
\mathbf{h}_{\Gamma_1} & \xrightarrow{\text{res}} & \mathbf{h}_{\Gamma_2}
\end{array}
\]

in which \(\mathbf{h} \in \text{Aut}(\mathbb{H}) \).

Looking at this picture differently,

\[
\begin{array}{ccc}
\mathbf{h} & \xrightarrow{f} & \mathbf{h} \\
\mathbf{h}_{\Gamma_1} & \xrightarrow{\text{res}} & \mathbf{h}_{\Gamma_2}
\end{array}
\]

\[
\text{By RMT, } h \text{ clearly acts.}
\]

Cannot have branching like bottom composite does not. So it not 1-1;

is quotient by some group and that would show up as \(\pi_1(\text{image}) \).

But \(\mathbf{h} \) is the image and \(\pi_1(\mathbb{H}) = \{1\} \).
it says that "h identifies quotients by \(\Gamma_2 \) ε \(\Gamma_2 \). If \(\gamma \in \Gamma_1 \) sends \(p \) to \(q \), then there is \(\bar{\gamma} \in \Gamma_2 \) sending \(h(p) \) to \(h(q) \); more precisely, \(\text{hol} h^{-1} = \bar{\gamma} \) belongs to \(\Gamma_2 \). In this way one sees that \(h \Gamma_1 h^{-1} = \Gamma_2 \) inside \(\text{Aut}(H) \leq \text{PGL}_2(\mathbb{R}) \).}

(c) Let \(f \in S \) and \(f(D) \) starlike, \(r \in (0,1) \).

(c) The \(f(D) \) is starlike is expressed by well-definedness of \(\gamma_t(z) := f^{-1}(r f(z))^t \), for any \(t \in (0,1) \).

Clearly

\(\# \) \quad \gamma_0(z) = z, \quad \gamma_1(D) \subset D. \)

We want that \(f(D_r) \) is starlike, i.e. that for any \(t \in (0,1) \)

\(\# \# \) \quad \gamma_t(D_r) \subset D_r.

But \((\#) \) + Schwarz \(\Rightarrow |\gamma_t(z)| \leq |z| \), from which \((\# \#) \) is immediate.

It is now clear that \(\frac{d}{d\theta} \log f(re^{i\theta}) \geq 0 \), since otherwise the boundary of the starlike region \(f(D_r) \) would "backtrack along itself" (or \(f \) wouldn't be 1-1), \(\nabla \).

(b) For \(|z| = r \), \(\frac{d}{d\theta} \log f = \frac{\text{Im } \log f(re^{i\theta})}{r} \) \(\text{Im } \log f(re^{i\theta}) = \text{Im } \frac{r e^{i\theta} f'(re^{i\theta})}{f(re^{i\theta})} = \text{Re } \frac{z f'(z)}{f(z)} \).
Set \(g(z) = \int_0^z f(t) \, dt \in \mathcal{K}(D). \) Clearly \(g(0) = 0 \)

\[
\begin{align*}
(\text{a}) \quad g'(z) &= f(z) \quad \therefore \quad g''(z) = \frac{zf'(z) - f(z)}{z^2} = \frac{f'(z) - f(z)}{z^2} \\
&= \text{Re} \left(1 + \frac{zf''}{g'} \right) = \text{Re} \left(1 + \frac{z}{f' / f} \cdot \left(\frac{f(z) - f(0)}{z^2} \right) \right) = \text{Re} \left(1 + \frac{zf'}{f} \right)
\end{align*}
\]

\[= \text{Re} \left(\frac{zf'}{f} \right) \geq 0\]

From parts (a) and (b) of (7).

(b) \[\text{Set } |\zeta| = r, \quad \text{max } \frac{\frac{d}{dt} g(t)}{g(t)} = \frac{1}{\theta} \quad \therefore \quad g(\zeta) = \frac{2\zeta g'(\zeta)}{2}\]

\[\Rightarrow \quad \frac{1}{\theta} \arg \frac{d}{dt} g(r e^{i\theta}) = \frac{1}{\theta} \text{ Im } \log \left(\frac{i \zeta g'(\zeta)}{\zeta^2 + \left(\frac{r e^{i\theta}}{g'(\zeta)} \right)^2} \right) \]

\[= \text{ Im } \left\{ \frac{i \zeta e^{i\theta} + i \zeta g'(\zeta)}{g'(\zeta)} \right\} \]

\[\Rightarrow \quad \text{Re } \left(1 + \frac{zf''}{g'} \right) \geq 0\]

\[\therefore \text{ Tangent vector to } g(D) \text{ lands only in } \text{counter-clockwise direction as we move counter-clockwise.}\]

\[\Rightarrow \quad g(D_r) \text{ convex } (\text{for each } r \in (0, 1))\]

\[\Rightarrow \quad g(D) \text{ convex.}\]

(c) \[g(z) = z + \sum_{n=2}^{\infty} b_n z^n. \quad \text{Piece in } \mathbb{N}.\]

Set \(G(z) = \sum_{j=1}^m g(s_m^j z^j) \); since any "average" of pts. in a convex set is in the set, we conclude \(G(D) \subset g(D) \).

Further \[G(z) = b_m z^m + O(|z|^{m+1}), \quad (\exists s_m^j = 0) \]

\[h(z) = \frac{1}{g'(z)} \text{ is defined, sends } D \to D.\]
and so \((g \circ h)(z) = t(z)\)

\[
\Rightarrow h(z) + \sum_{n \geq 2} b_n (h(z))^n = b_m z^m
\]

\[
\Rightarrow h(z) = b_m z^m + h.o.t.
\]

\[
\Rightarrow b_m = \oint_{|z|=r} \frac{h(z)}{z^{m+1}} \, dz
\]

\[
\text{for } r \in (0,1)
\]

\[
\Rightarrow |b_m| \leq \frac{1}{r^m} \quad \Rightarrow \quad |b_m| \leq 1. \quad \text{for any } m \geq 2
\]

\[
\text{with } f(z) = z + \sum_{n \geq 2} a_n z^n
\]

\[
\frac{f(z)}{z} \left(1 + \sum_{n \geq 2} a_n z^{n-1}\right) = g(z) \geq 1 + \sum_{n \geq 2} nb_n z^{n-1}
\]

\[
\Rightarrow a_n = nb_n
\]

\[
\Rightarrow |a_n| \leq n |b_n| \leq n.
\]