I.B. Integers

We turn to some results of Euclid. A prime number \(p \in \mathbb{Z} \) is one not equal to 0, 1, \(-1\) and whose only divisors are \(\pm p, \pm 1 \).

I.B.1. Fundamental Theorem of Arithmetic. Any natural number \(n \in \mathbb{N}\setminus\{0,1\} \) has (up to order) a unique factorization

\[
n = p_1 p_2 \cdots p_s,
\]
where the \(\{p_i\} \) are (positive) primes, which are not necessarily distinct.

Proof. We use induction (\(n = 1 \) is clear). Assume the statement holds for all \(n < m \). Then \(m \) has a prime factorization: either it is itself prime, or factors into \(m_1 m_2 \) with \(m_1, m_2 < m \).

As for uniqueness: if \(m = p_1 \cdots p_s = q_1 \cdots q_t \) with \(p_1 = q_1 \), this follows from induction. If instead \(p_1 < q_1 \), then \(t > 1 \) (since \(q_1 \) is prime and \(m \) isn’t) and

\[
1 < n_0 := \underbrace{p_1(p_2 \cdots p_s - q_2 \cdots q_t)}_{m} = (q_1 - p_1)q_2 \cdots q_t < m.
\]
Factoring the parentheticals into primes, the inductive hypothesis says that the resulting factorizations of \(n_0 \) must be the same (up to order). So we either have

\[
p_1 \mid (q_1 - p_1) \implies p_1 \mid q_1 \implies p_1 = q_1,
\]
which is a contradiction, or \(p_1 \) is one of the \(q_2,\ldots,q_t \). Reordering puts us back in the \(p_1 = q_1 \) case. \(\square \)

I.B.2. Proposition. There are infinitely many primes.

Proof. Suppose \(p_1,\ldots,p_s \) is a complete list of positive primes; then none of them divide \(p_1 \cdots p_s + 1 \), contradicting I.B.1. \(\square \)

The FTA leads to the notion of the \(\text{gcd} \) (= greatest common divisor) of \(m, n \in \mathbb{Z} \), written \((m,n) \) and well-defined up to sign. To find it, one traditionally employs the
I.B.3. DIVISION ALGORITHM. Given \(a, b \in \mathbb{Z}, \ b \neq 0 \), there exist \(q, r \in \mathbb{Z} \) such that

\[
0 \leq r < |b| \quad \text{and} \quad a = bq + r.
\]

PROOF. We may assume \(b > 0 \); then \(M := \{bn \mid n \in \mathbb{Z}, \ bn \leq a\} \) is nonempty and bounded above, hence\(^4\) has a largest element \(bq \). So \(a = bq + r \) (for some \(r \geq 0 \)) and \(b(q + 1) > a \), from which \(b > r \). \(\square \)

To find \((m, n)\), we write as in I.B.3

\[
\begin{align*}
n &= q_0m + r_0 \\
m &= q_1r_0 + r_1 \\
r_0 &= q_2r_1 + r_2 \\
r_1 &= q_3r_2 + r_3 \\
&\vdots
\end{align*}
\]

in which the gcd is the last nonzero remainder \(r_i \).\(^5\) This is best covered and proved later in a more general context (that of principal ideal domains). For now, we shall just show:

I.B.4. PROPOSITION. \((m, n) = mu + nv\) for some \(u, v \in \mathbb{Z} \).

PROOF. Let \(I := \{mx + ny \mid x, y \in \mathbb{Z}\} \), with least positive element \(d = mu + nv \in I \cap \mathbb{Z}_{>0} \). Writing \(m = dq + r \) (with \(0 \leq r < d \)), one finds

\[
r = m - dq = m - (mu + nv)q = m(1 - uq) - n(vq) \in I.
\]

For this not to contradict leastness of \(d \), we must have \(r = 0 \) and thus \(d \mid m \). Similarly, \(d \mid n \). Moreover, any \(e \) dividing both \(m \) and \(n \) divides \(d \), which is therefore maximal among common divisors. \(\square \)

\(^4\)This is the well-ordering principle; it is equivalent to the principle of induction.

\(^5\)The idea: \((n, m) = (n - q_0m, m) = (r_0, m)\) and so on. You eventually reach \((r_{i-1}, r_i)\), with \(r_{i-1} = q_{i+1}r_i \).