III.G. Polynomial rings

Throughout we shall assume that R, S denote commutative rings. We defined polynomial rings over R in an indeterminate x (and in independent indeterminates x_1, \ldots, x_n) in III.A.3(iv). From the inductive construction there it is clear that (writing $\mathcal{I} = (i_1, \ldots, i_n) \in \mathbb{N}^n$ and $x^\mathcal{I} := x_1^{i_1} \cdots x_n^{i_n}$)

\begin{align*}
(\text{III.G.1}) \quad 0 = \sum_\mathcal{I} a_\mathcal{I} x^\mathcal{I} \in R[x_1, \ldots, x_n] \quad \iff \quad \text{all } a_\mathcal{I} = 0.
\end{align*}

Write $\mathfrak{i}: R \hookrightarrow R[x]$ (or $R[x_1, \ldots, x_n]$).

III.G.2. Theorem. Given $\varphi: R \to S$ and $u \in S$, there exists a unique homomorphism $\tilde{\varphi}: R[x] \to S$ such that $\tilde{\varphi}(x) = u$ and $\tilde{\varphi} \circ \mathfrak{i} = \varphi$. (More generally, given $u_1, \ldots, u_n \in S$, there exists a unique $\tilde{\varphi}_n: R[x_1, \ldots, x_n] \to S$ such that $\tilde{\varphi}_n(x_i) = u_i \ (\forall i)$ and $\tilde{\varphi}_n \circ \mathfrak{i} = \varphi$.)

Proof. Uniqueness follows from the fact that $\tilde{\varphi}$ [resp. $\tilde{\varphi}_n$] is specified on generators of $R[x]$, namely R and x [resp. x_1, \ldots, x_n].

For existence of $\tilde{\varphi}$, define $\tilde{\varphi}(\sum_k a_k x^k) := \sum_k \varphi(a_k) u^k$. We have

\begin{align*}
\tilde{\varphi}(\sum_k a_k x^k) \varphi(\sum_\ell b_\ell x^\ell) &= \sum_n (\sum_{k+\ell=n} \varphi(a_k) \varphi(b_\ell)) u^n \\
&= \sum_n \varphi(\sum_{k+\ell=n} a_k b_\ell) u^n \quad \text{[since } \varphi \text{ homom.]} \\
&= \tilde{\varphi}(\sum_n (\sum_{k+\ell=n} a_k b_\ell) x^n) \\
&= \tilde{\varphi}(\sum_k (\sum_k a_k x^k)(\sum_\ell b_\ell x^\ell)),
\end{align*}

so $\tilde{\varphi}$ is a homomorphism (the other checks being trivial).

For existence of $\tilde{\varphi}_n$, apply induction: at each stage, we extend $\tilde{\varphi}_{n-1}: R[x_1, \ldots, x_{n-1}] \to S$ to $\tilde{\varphi}_n: R[x_1, \ldots, x_{n-1}][x_n] \to S$ restricting to $\tilde{\varphi}_{n-1}$ and sending $x_n \mapsto u_n$. \qed

III.G.3. Definition. If $S \supset R$ and φ is the inclusion, $\tilde{\varphi}$ [resp. $\tilde{\varphi}_n$] is denoted ev_u [resp. ev_u^n], and the image by

$$
\text{ev}_u(R[x]) \ (=: R[u])
$$

[resp. $\text{ev}_u^n(R[x_1, \ldots, x_n]) \ (=: R[u_1, \ldots, u_n]$)]. Note that this image consists of polynomials in u [resp. the $\{u_i\}$.]
III.G.4. COROLLARY. Writing $I_u := \ker(\text{ev}_u)$, we have

$$R[u] \cong R[x]/I_u$$

and $I_u \cap R = \{0\}$ (and the obvious analogues for u).

PROOF. Use the Fundamental Theorem together with injectivity of $\text{ev}_u|_R (= \varphi)$. □

III.G.5. COROLLARY. Given $\sigma \in S_n$, there exists a unique automorphism $\zeta(\sigma)$ of $R[x_1, \ldots, x_n]$ sending $x_i \mapsto x_{\sigma(i)}$.

PROOF. Put $S := R[x_1, \ldots, x_n]$, $u_i := x_{\sigma(i)}$, and $\zeta(\sigma) := \bar{\varphi}_n$. An inverse is provided by $\zeta(\sigma^{-1})$. □

III.G.6. DEFINITION. As in III.G.3, let u or u_1, \ldots, u_n be elements of a ring S containing R.

(i) u is **transcendental** over $R \iff \text{ev}_u$ is injective.

(ii) Otherwise, u is **algebraic** over R. In this case there exists $f(x) \in I_u \setminus \{0\}$, so that $f(u) = 0$ in S. (That is, u satisfies a polynomial equation with coefficients in R.)

(iii) u_1, \ldots, u_n are **algebraically independent** over $R \iff \text{ev}_u$ is injective; otherwise, they are **algebraically dependent**.

As a consequence of (III.G.1), u_1, \ldots, u_n are algebraically independent if, and only if,

(III.G.7) $\sum_I r_I u^I = 0 \implies \text{all } r_I = 0$.

On the other hand, if $R = F$ and S are fields,\(^{19}\) and each u_i algebraic over F, then $F[u_1, \ldots, u_n]$ is called an **algebraic extension** of F.

III.G.8. PROPOSITION. An algebraic extension (of a field F) is a field. Moreover, every element of this field is algebraic over F.

PROOF. We only have to prove this for $F[u]$, u algebraic (since induction then yields it for $F[u_1, \ldots, u_n]$). Let $f(x) = \sum_{k=0}^n a_k x^k \in F[x]$

\(^{19}\) The argument below works for S a domain. We will give a “higher-level” approach to III.G.8 when we study PIDs.
be a (nonzero) polynomial of minimal degree with \(f(u) = 0 \). (Note that this degree is \(n \).) Since \(S \) has no zero-divisors, \(f(x) \) is irreducible. In particular, \(a_0 \neq 0 \) and (rescaling) we may assume \(a_0 = 1 \). Then \((-\sum_{k=1}^{n} a_k u^{k-1}) \cdot u = 1\) shows that \(u \) is invertible in \(\mathbb{F}[u] \).

Now let \(v \in \mathbb{F}[u] \) be arbitrary. If there exists some polynomial \(g(x) = \sum_{k} b_k x^k \in \mathbb{F}[x] \) with \(g(v) = 0 \) in \(S \), then the same argument (taking \(g \) of minimal degree, \(b_0 = 1 \), etc.) produces an inverse for \(v \) in \(\mathbb{F}[u] \), namely \(-\sum_{k>0} b_k v^{k-1}\). So this will prove both statements of the Proposition.

Notice that \(\mathbb{F}[u] \) is a vector space over \(\mathbb{F} \) of dimension \(n \). Indeed, using \(f(u) = 0 \) \((\implies u^n = -\sum_{k=0}^{n-1} a_k u^{k}) \) we can reduce the degree of any polynomial in \(u \) (i.e. element of \(\mathbb{F}[u] \)) to \(\leq n - 1 \). Moreover, if \(\sum_{k=0}^{n-1} c_k u^k = \sum_{k=0}^{n-1} c'_k u^k \in \mathbb{F}[u] \) then \(c_k = c'_k \): otherwise the difference of the two sides gives a polynomial of degree \(< n \) with \(u \) as a root, contradicting minimality of \(n \).

So to find the desired polynomial \(g \), consider the linear transformation \(\mu_v : \mathbb{F}[u] \to \mathbb{F}[u] \) given by multiplication by \(v \). (This is calculated in the basis \(1, u, \ldots, u^{n-1} \) by using \(f(u) = 0 \).) Taking \(g \) to be the characteristic polynomial of \(\mu_v \), by Cayley-Hamilton \(0 = g(\mu_v) = \mu_{g(v)} \). As \(S \) hence \(\mathbb{F}[u] \) has no zero-divisors, \(g(v) \) is itself zero. \(\square \)

III.G.9. Example. An algebraic field extension \(F \) of \(\mathbb{Q} \) is called a number field. By III.G.8, every \(\alpha \in F \) has \(f(x) \in \mathbb{Q}[x] \) such that \(f(\alpha) = 0 \). The ring of integers \(\mathcal{O}_F \subset F \) comprises those \(\alpha \) with an \(f \) of the form

\[(III.G.10) \quad x^m + a_{m-1}x^{m-1} + \cdots + a_0, \quad a_j \in \mathbb{Z}.\]

(Such a polynomial, with top coefficient 1, is called monic.) Checking directly that \(\mathcal{O}_F \) is a ring is too messy. We postpone that to when we have the tools for a better approach, which will show in addition that the characteristic polynomial of multiplication by \(\alpha \in \mathcal{O}_F \) (as in the above proof) is itself monic integral. Since that polynomial has degree \(n := \dim_{\mathbb{Q}}(F) \) (from the proof), we only need to consider equations (III.G.10) with \(m = n \).
Consider \(F = \mathbb{Q}[\sqrt{d}] \cong \mathbb{Q}[x]/(x^2 - d) \). What is \(\mathcal{O}_F \)? (We assume \(d \) squarefree, so that \(d \not\equiv \frac{(4)}{0} \).)

Since the above “\(n \)” is just 2 in this case, an element \(a + b\sqrt{d} \) (\(a, b \in \mathbb{Q} \)) of \(F \) belongs to \(\mathcal{O}_F \) if and only if it satisfies

\[
0 = (a + b\sqrt{d})^2 + m(a + b\sqrt{d}) + n \quad \text{for some} \quad m, n \in \mathbb{Z}.
\]

Then \(0 = (a^2 + b^2d + ma + n) + (2ab + mb)\sqrt{d} \), and so either

(i) \(b = 0 \) and \(a^2 + ma + n = 0 \) (\(\implies a \in \mathbb{Z} \))

or

(ii) \(-2a = m \) (\(\implies a = \frac{A}{2}, A \in \mathbb{Z} \)) and
\[
b^2 = -\frac{A^2 + 2mA + 4n}{4d} \quad (\implies b = \frac{B}{2}, B \in \mathbb{Z}).
\]

In case (ii), \(\frac{A^2 + B^2d + 2mA}{4} = -n \in \mathbb{Z} \implies A^2 + B^2d + 2mA \equiv \frac{0}{4} \).

Thus:

- if \(A \) is even, then \(B^2d \equiv \frac{0}{4} \) (and \(d \not\equiv \frac{0}{4} \)) hence \(B \) is even; while

- if \(A \) is odd, then \(m \) is odd and (noting \(3^3, 1^2 \equiv \frac{1}{4} \))

\[
1 + B^2d + 2 \equiv 0 \quad \implies B^2d \equiv \frac{1}{4} \quad \implies B \text{ odd and } d \equiv \frac{1}{4}.
\]

This gives the “\(\subseteq \)” half of

\[
(\text{III.G.11}) \quad \mathcal{O}_F = \begin{cases}
\mathbb{Z}[\frac{1 + \sqrt{d}}{2}], & d \equiv 1 \\
\mathbb{Z}[\sqrt{d}], & \text{otherwise}.
\end{cases}
\]

The reverse inclusion “\(\supseteq \)” is more straightforward: given \(\alpha = a + b\sqrt{d} \) on the RHS, consider \((x - a)(x - \bar{a}) \), where \(\bar{a} = a - b\sqrt{d} \) as usual.

Polynomial division. Earlier we made assertions about polynomial division in \(\mathbb{F}[x] \), \(\mathbb{F} \) a field. Now it is time to be more precise. Given \(f(x) = \sum_{j=0}^{d} a_jx^j \) with \(a_j \in R \) (an arbitrary commutative ring) and \(a_d \neq 0 \), write \(\deg(f) := d \). We set \(\deg(0) := -\infty \). Then

\[
(\text{III.G.12}) \quad \deg(fg) \leq \deg(f) + \deg(g) \quad \text{(with equality if } R \text{ is a domain)}
\]
and

(III.G.13) \(\deg(f + g) \leq \max(\deg(f), \deg(g)) \).

III.G.14. Proposition

\(R \) domain \(\implies R[x_1, \ldots, x_n] \) domain and \(R[x_1, \ldots, x_n]^* = R^* \).

Proof. For \(n = 1 \), \(fg = 0 \implies \deg(f) + \deg(g) = \deg(fg) = -\infty \implies f \) or \(g = 0 \) while \(fg = 1 \implies \deg(f) + \deg(g) = 0 \implies \deg(f) = 0 = \deg(g) \implies f, g \in R^* \). For \(n > 1 \), use induction. \(\square \)

For \(R \) not a domain, we need not have \(R[x]^* \) equal to \(R^* \): e.g. in \(\mathbb{Z}_9[x], (1 + 3x)(1 - 3x) = 1 \).

Now let \(R \) be any commutative ring, and

\[f = \sum_{i=0}^{n} a_i x^i, \quad g = \sum_{j=0}^{m} b_j x^j \in R[x]. \]

III.G.15. Theorem (Polynomial long division)

There exist \(k \in \mathbb{N} \) and \(q, r \in R[x] \) such that \(\deg(r) < \deg(g) \) and \((b_m)^k f = q g + r \). If \(b_m \in R^* \) then we have \(f = q g + r \), and \(q, r \) are unique.

Proof. Assume \((n =) \deg(f) \geq \deg(g) \) (since otherwise we’re done). Writing\(^{20}\)

\[f_1 := b_m f - a_n x^{n-m} g \quad \text{(noting } n_1 := \deg(f_1) < \deg(f)) \]

\[f_2 := b_m f_1 - a_n^{(1)} x^{n_1-m} g =: (b_m)^2 f - p_2 g \]

\[\vdots \]

we eventually reach

\[r := f_k := b_m^k f - p_k g \quad \text{of degree } < \deg(g) \]

For the uniqueness statement, we are assuming \(b_m \in R^* \). If \(q_1 g + r_1 = q_2 g + r_2 \), then \(\deg((q_1 - q_2)g) = \deg(r_2 - r_1) < m \). If \(q_1 - q_2 \neq 0 \), then (since \(b_m \) is not a zero-divisor) \(\deg((q_1 - q_2)g) \geq m \) yields a contradiction. So \(q_1 = q_2 \), and thus \(r_1 = r_2 \). \(\square \)

\(^{20}\) Note: \(a_k^{(j)} \) denote coefficients of \(f_j \).
III.G.16. Corollary. Given \(f \in R[x] \) and \(a \in R \), there exist unique \(q, r \in R[x] \) such that \(f(x) = (x - a)q(x) + f(a) \). Hence, \((x - a) \mid f(x) \iff f(a) = 0 \). (Such an “a” is called a root of \(f \).)

All of this is for a general commutative ring. More narrowly:

III.G.17. Corollary. If \(R \) is a domain, then a polynomial \(f \in R[x] \) of degree \(n := \deg(f) \) has at most \(n \) roots.

Proof. Let \(a_1, \ldots, a_r \) be distinct roots of \(f \). We have \((x - a_1) \mid f\) by III.G.16. Assume inductively \((x - a_1) \cdots (x - a_{k-1}) \mid f\). Then
\[
0 = f(a_k) = (a_k - a_1) \cdots (a_k - a_{k-1})g(a_k)_{\neq 0}
\]
\[
0 = g(a_k) \quad \text{(since } R \text{ is a domain)}
\]
\[
g(x) = (x - a_k)h(x) \quad \text{(for some } h \in R[x])
\]
\[
(x - a_1) \cdots (x - a_k) \mid f.
\]

So in fact, \(f(x) = H(x) \prod_{j=1}^r (x - a_i) \) (for some \(H \in R[x] \)) hence \(n \geq r \). \(\square \)

What if \(R \) is not a domain? Consider, say, polynomials over \(\mathbb{Z}_6 \): \(f(x) = 3x \) has \(\bar{0}, \bar{2}, \) and \(\bar{4} \) as roots. So III.G.17 fails.

Turning to the case where \(R \) is a field, we have the famous

III.G.18. Theorem. The multiplicative group of a finite field is cyclic. More generally, any finite subgroup \(G \) of the multiplicative group of a field \(F \) is cyclic.

Proof. Recall from II.D.15 that since \(G \) is abelian, \(G \) is cyclic \(\iff \exp(G) = |G| \). This was based on the fact that there exists an element of order \(\exp(G) := \min\{e \in \mathbb{N} \mid g^e = 1 \ (\forall g \in G)\} \). In general, \(\exp(G) \leq |G| \) since \(g^{[G]} = 1 \) for all \(g \in G \).

Now every \(g \in G \) satisfies \(g^{\exp(G)} - 1 = 0 \). But III.G.17 \(\implies x^{\exp(G)} - 1 \) has at most \(\exp(G) \) roots. So \(|G| \leq \exp(G) \). \(\square \)

III.G.19. Example. This says \(\mathbb{Z}_{17}^* \cong \mathbb{Z}_{16} \), and not \(\mathbb{Z}_2^4 \), \(\mathbb{Z}_8 \times \mathbb{Z}_2 \), etc. — this beats trying to find a generator!
III.G.20. REMARK. Assuming the structure theorem for finitely generated abelian groups, we can give a different proof of III.G.18 as follows. The structure theorem tells us that $G \cong \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_k}$ where $m_1 > 1$ and $m_1 | m_2 | \cdots | m_k$. So every $g \in G$ is a root of $x^{m_k} - 1$, hence $|G| \leq m_k$ (by III.G.17), whence $k = 1$.

As we shall see later, there exist finite fields of prime power order (for any prime power).

III.G.21. COROLLARY. If F is a finite field, then $F \cong \mathbb{Z}_p[u]$ where \mathbb{Z}_p is its prime subfield and u is algebraic over \mathbb{Z}_p.

PROOF. Let u be a generator of the multiplicative group $F^* = F \setminus \{0\}$. □

Polynomial functions. Let F be a field, $F^n := F \times \cdots \times F$ (n times).

Consider a different kind of evaluation map:

(III.G.22)

$$\Phi_{n,F}: F[x_1,\ldots,x_n] \longrightarrow F^{F^n} = \prod_{u \in F^n} F \left(=: \text{ring of } F\text{-valued functions over } F^n \right)$$

$$f(x) \longmapsto \{f(u)\}_{u \in F^n}$$

The image $\Phi_{n,F}(F[x_1,\ldots,x_n]) =: \mathcal{P}_n(F)$ is called the ring of $(F$-valued) polynomial functions over F^n. We write s_i for $\Phi_{n,F}(x_i)$, the ith coordinate function, and clearly $\mathcal{P}_n(F) = F[s_1,\ldots,s_n]$. Two questions arise:

- Are all functions polynomial functions? (i.e. is $\Phi_{n,F}$ surjective?)
- Do distinct polynomials yield distinct functions? (i.e. is $\Phi_{n,F}$ injective? Note that this would imply that $\mathcal{P}_n(F) \cong F[x_1,\ldots,x_n]$.)

We can give a surprisingly clear answer to both questions with the aid of the following

21 This will be discussed and proved in the context of modules where it belongs.
22 Note that the group operation is being written multiplicatively, because G is a multiplicative group inside a field. In “additive” terms, $g^{m_k} - 1 = 0$ reads $m_kg = 0$.
23 Obviously \mathbb{Z}_p^n isn’t a field, so that won’t cut it!
III.G. POLYNOMIAL RINGS

III.G.23. **Lemma.** Assume $|\mathbb{F}| = \infty$. Then for each $f \in \mathbb{F}[x_1, \ldots, x_n]$ other than the zero polynomial, there exists $u \in \mathbb{F}^n$ with $f(u) \neq 0$.

Proof. For $n = 1$: any $f \in \mathbb{F}[x]$ has at most $\deg(f) (< \infty)$ roots, so $\Phi_{n,\mathbb{F}}(f) \neq 0$. Next, assuming the result for $n - 1$ indeterminates, let $f_n \in \mathbb{F}[x_1, \ldots, x_{n-1}][x_n]$. Writing $f_n = g_0 + g_1 x_n + \cdots + g_d x_n^d$, let $u' \in \mathbb{F}^{n-1}$ be such that $g_d(u') \neq 0$. Then $f_n(u',x_n)$ is a nontrivial polynomial in x_n, and we get $u_n \in \mathbb{F}$ such that $f_n(u',u_n) \neq 0$. □

III.G.24. **Theorem.** $\Phi_{n,\mathbb{F}}$ is injective $\iff |\mathbb{F}| = \infty$.

Proof. If $|\mathbb{F}| = q < \infty$, then $|\mathbb{F}^n| = q - 1$ and so $a^{q-1} = 1 \implies a^q = a$ ($\forall a \in \mathbb{F}$) $\implies x_1^q - x_1 \in \ker(\Phi_{n,\mathbb{F}})$. If $|\mathbb{F}| = \infty$, the lemma implies that no nonzero $f \in \mathbb{F}[x_1, \ldots, x_n]$ is sent to the zero function. □

III.G.25. **Theorem.** If $|\mathbb{F}| < \infty$, then $\Phi_{n,\mathbb{F}}$ is surjective.

Proof. The proof of III.G.23 shows that when $\deg_{x_i}(f) < q := |\mathbb{F}|$ for all i, there exists $u \in \mathbb{F}^n$ such that $f(u) \neq 0$. This is because at each stage of the induction, the number of roots of f_n in x_n is less than the number of elements of \mathbb{F}.

On the other hand, the functions $x_i^q - x_i$ in the proof of III.G.24 belong to $\ker(\Phi_{n,\mathbb{F}})$. By the division algorithm, for every $k \geq q$ we get $x_i^k = (x_i^q - x_i)Q(x_i) + R(x_i)$ with $\deg(R) < q$, and so any $f \in \mathbb{F}[x_1, \ldots, x_n]$ is of the form

$$\sum_{i=1}^n g_i(x)(x_i^q - x_i) + g(x), \quad \text{with } \deg_{x_i}(g) < q \ (\forall i).$$

Hence $f \in \ker(\Phi_{n,\mathbb{F}}) \iff g(x) = 0$, which yields

(III.G.26) $\mathcal{P}_n(F) \cong \mathbb{F}[x_1, \ldots, x_n]/(x_1^q - x_1, \ldots, x_n^q - x_n)$.

But $|\mathbb{F}^\mathbb{F}| = q^{q^n}$, and

$$|\mathcal{P}_n(F)| = \#\{\text{choices for } g(x) = \sum_{i_1, \ldots, i_n=0}^{q-1} a_{i_1} x_1^{i_1} \} = q^{q^n}$$

as well. □
Symmetric polynomials. Looking back at III.G.5, the automorphisms \(\zeta(\sigma) \) of \(F[x_1, \ldots, x_n] \) produce a group homomorphism

\[
\zeta : S_n \to \text{Aut}(F[x_1, \ldots, x_n]).
\]

We will write \(F[x_1, \ldots, x_n]^{S_n} \) for the subring of \(\zeta(S_n) \)-invariant elements, i.e. the symmetric polynomials. Also note that a polynomial is called \textbf{homogeneous} if all its monomial terms have the same total degree (= sum of exponents).

III.G.27. \textbf{Definition.} (i) The \textbf{elementary symmetric polynomials}\(^{24}\) are

\[
e_1(x) = \sum_i x_i, \quad e_2(x) = \sum_{i < j} x_i x_j, \quad \ldots, \quad e_n(x) = x_1 \cdots x_n.
\]

(ii) The \textbf{Newton symmetric polynomials} are

\[
s_1(x) = \sum_i x_i, \quad s_2(x) = \sum_i x_i^2, \quad \ldots, \quad s_n(x) = \sum_i x_i^n.
\]

Both sets belong to \(F[x_1, \ldots, x_n]^{S_n} \), which is easiest to see for the \(\{e_i\} \) by writing formally

(III.G.28) \[
\prod_{i=1}^n (y - x_i) = \sum_{j=0}^n (-1)^j e_j(x) y^{n-j}.
\]

We shall prove below that the \(e_i \) “span” \(F[x_1, \ldots, x_n]^{S_n} \). (More precisely, III.G.29 means that there is one and only one way to write each symmetric polynomial in the form \(\sum_{D \in \mathbb{N}^n} a_D e_D \), where \(e_D := e_1(x)^{d_1} \cdots e_n(x)^{d_n} \).) As you will show in HW, the \(s_i \) also “span the symmetric polynomials” if \(n! \neq 0 \) in \(F \).

Consider the ring homomorphism

\[
\mathcal{E}_n : F[x_1, \ldots, x_n] \to F[x_1, \ldots, x_n]^{S_n}
\]

\[
x_i \mapsto e_i(x)
\]

with image \(F[e_1, \ldots, e_n] \).

III.G.29. \textbf{Theorem.} \(\mathcal{E}_n \) \textit{is an isomorphism}.

\(^{24}\)Note that \(e_k(x) \) has \(\binom{n}{k} \) monomial terms.
PROOF. We begin with surjectivity. Since every symmetric polynomial is a sum of homogeneous symmetric polynomials, it suffices to prove that every homogeneous symmetric polynomial is a polynomial in the \(\{ e_i \} \).

Under the lexicographic ordering on monomials, let \(a_K x_1^{k_1} \cdots x_n^{k_n} \) be the highest-order term in some given symmetric \(f \); since \(f \) contains all permutations of each monomial, we have \(k_1 \geq k_2 \geq \cdots \geq k_n \). The highest monomial in \(e_1^{k_1-k_2} e_2^{k_2-k_3} \cdots e_n^{k_n} \) is

\[
(x_1)^{k_1-k_2} (x_1 x_2)^{k_2-k_3} (x_1 x_2 x_3)^{k_3-k_4} \cdots (x_1 \cdots x_n)^{k_n} = x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n}.
\]

Hence \(f - a_K e_1^{k_1-k_2} \cdots e_n^{k_n} \) has lower highest monomial than \(f \), and continuing on in this manner we eventually reach the zero polynomial.

Turning to injectivity, consider a finite sum \(\sum_D a_D x_1^{i_1} \cdots x_n^{i_n} \) (with not all \(a_D \) zero). For each \(D \in \mathbb{N}^n \), write (for \(i = 1, \ldots, n \)) \(k_i = d_i + \cdots + d_n \), and consider those (nonzero) \(a_D x_1^{i_1} \cdots x_n^{i_n} \) with largest \(|K| := \sum_i k_i \). The highest monomial in each is \(a_D x_1^{i_1} \cdots x_n^{i_n} \), and these are all distinct \((D \neq D' \implies K \neq K') \). Taking the (unique) \(a_D x_1^{i_1} \cdots x_n^{i_n} \) with “highest highest” monomial, we see that this monomial occurs once, with a nonzero coefficient. Hence \(\sum_D a_D x_1^{i_1} \cdots x_n^{i_n} \neq 0 \). \(\square \)