V.B. Finite-dimensional division algebras

What about a vector space where you can multiply and divide vectors?

V.B.1. Definition. A division algebra over a field \mathbb{F} is an \mathbb{F}-algebra A whose underlying ring is a division ring.

This rules out most of the examples in V.A.4; for example, products like $\mathbb{F} \times \mathbb{F}$ contain zero-divisors, as do matrix algebras.

V.B.2. Examples. (i) Field extensions are division algebras: e.g., \mathbb{C} is an \mathbb{R}-division algebra; and $\mathbb{Q}[\zeta]$ is a \mathbb{Q}-division algebra.
(ii) Quaternion algebras give some non-commutative examples: \mathbb{H} (Hamilton’s quaternions) is an \mathbb{R}-division algebra; while the non-split (i.e., division ring) cases in HW 6 #6 give \mathbb{Q}-division algebras.

We are particularly interested in division algebras which are finite-dimensional (as \mathbb{F}-vector spaces). While number fields (viewed as field extensions) easily yield an endless list of such examples over \mathbb{Q}, you may find it difficult to recall seeing any finite-dimensional field extensions of \mathbb{C}. That is because they don’t exist!

V.B.3. Definition. (i) An algebraic field extension\footnote{Warning: these need not be finite-dimensional (though they certainly are if they are finitely generated).} of \mathbb{F} is one whose every element is algebraic (cf. III.G.6(ii)) over \mathbb{F}.
(ii) Call a field \mathbb{F} algebraically closed if it has no algebraic field extensions (other than itself).

V.B.4. Example. The Fundamental Theorem of Algebra states that every polynomial over \mathbb{C} has a root (hence all roots) in \mathbb{C}. (This theorem is proved in complex analysis.) Since any element α of a field extension which is algebraic over \mathbb{C} satisfies a polynomial equation $P(\alpha) = 0$, α actually belongs to \mathbb{C}. So \mathbb{C} is algebraically closed.

Clearly division algebras are the simplest kind of \mathbb{F}-algebra after field extensions; so we shall do a rough classification for $\mathbb{F} = \mathbb{R}, \mathbb{C}$, and finite fields. To begin with, we finish off \mathbb{C} with the
V.B.5. **Theorem.** Let \mathbb{F} be an algebraically closed field, and A a finite-dimensional division algebra over \mathbb{F}. Then $A = \mathbb{F}$.

Proof. Let $a \in A$, and consider the ring homomorphism

$$\text{ev}_a : \mathbb{F}[\lambda] \rightarrow \mathbb{F}[a] \subset A,$$

$$f(\lambda) \mapsto f(a).$$

This cannot be injective, since A (hence $\mathbb{F}[a]$) is finite-dimensional and $\mathbb{F}[\lambda]$ is not. So we have $\mathbb{F}[a] \cong \mathbb{F}[\lambda]/(m_a)$, where m_a is the minimal polynomial of a over \mathbb{F}. Were this reducible, $\mathbb{F}[a]$ wouldn’t be a domain, which is impossible since A is a division algebra.

Hence m_a is irreducible, and $\mathbb{F}[a]$ is a field, all of whose elements are algebraic over \mathbb{F} (cf. III.G.8). Since \mathbb{F} is algebraically closed, $\mathbb{F}[a] = \mathbb{F}$. So, in particular, $a \in \mathbb{F}$; and since $a \in A$ was arbitrary, $A = \mathbb{F}$. \[\square\]

Given $p(\lambda) \in \mathbb{R}[\lambda]$ monic, we have

$$p(\lambda) = \prod_{j=1}^{n}(\lambda - a_j) = \prod_{j=1}^{n}(\lambda - \bar{\alpha}_j)$$

in $\mathbb{C}[\lambda]$, by the Fundamental Theorem of Algebra. We can rewrite this as

$$p(\lambda) = \prod_{i=1}^{n}(\lambda - a_i) \times \prod_{k=1}^{g}(\lambda - \beta_k)(\lambda - \bar{\beta}_k)$$

$$= \prod_{i=1}^{n}(\lambda - a_i) \times \prod_{k=1}^{g}(\lambda^2 - 2\Re(\beta_k) + |\beta_k|^2),$$

with $a_i \in \mathbb{R}$ and $\beta_k \notin \mathbb{R}$. Hence no polynomial of degree > 2 is irreducible in $\mathbb{R}[\lambda]$.

Let A be a finite-dimensional division algebra over \mathbb{R}. Given $\alpha \in A \setminus \mathbb{R}$, we consider as usual

$$\text{ev}_\alpha : \mathbb{R}[\lambda] \rightarrow \mathbb{R}[\alpha] \subset A,$$

which as above has a nontrivial kernel K since $\dim_{\mathbb{R}}(A) < \infty$. Since $\mathbb{R}[\lambda]$ is a PID, $K = (m_\alpha)$ with m_α irreducible (also as above); and as $\alpha \notin \mathbb{R}$, $\deg(m_\alpha) > 1$. So $\deg(m_\alpha) = 2$, and $m_\alpha(\lambda) = \lambda^2 - 2a\lambda + b$.

with $a^2 < b$. We may thus write $\alpha = \beta + a$, where $\beta \in A \setminus \mathbb{R}$ and $\beta^2 = a^2 - b < 0$.
Now consider the subset
\[A' := \{ \alpha \in A \mid \alpha^2 \in \mathbb{R}_{\leq 0} \} \subset (A \setminus \mathbb{R}) \cup \{ 0 \}. \]
From the last paragraph it is clear that if \(A \setminus \mathbb{R} \neq \emptyset \), then \(A' \neq \{ 0 \} \)
(and the converse is obvious).

V.B.6. Lemma. \(A' \) is an \(\mathbb{R} \)-subspace of \(A \).

Proof. Given \(r \in \mathbb{R}, \alpha \in A' \), we have \((ar)^2 = \alpha^2 r^2 \leq 0 \implies ar \in A'\). So \(A' \) is closed under multiplication and we only need to check sums of elements. So let \(u, v \in A' \setminus \{ 0 \} \) be linearly independent over \(\mathbb{R} \) in \(A \). (If they are dependent, \(u + v \) is a multiple of \(u \) and we are done.) By assumption, we have \(u^2, v^2 \in \mathbb{R}_{<0} \).

Suppose first that \(u = av + b \), with \(a, b \in \mathbb{R} \). Then in
\[u^2 = (av + b)^2 = a^2 v^2 + 2abv + b^2, \]
the RHS terms are real except for \(2abv \), which forces \(ab = 0 \). But we can’t have \(a = 0 \), for then \(u = b \in \mathbb{R} \); and if \(b = 0 \), then \(u = av \) contradicts the independence.

So \(u \) is not of the form \(av + b \), which means that \(u, v \), and \(1 \) are independent over \(\mathbb{R} \). Hence \(u + v, u - v \in A \setminus \mathbb{R} \); and so as above (for \(\alpha \), they satisfy irreducible quadratic equations
\[0 = (u + v)^2 - p(u + v) - q \quad \text{and} \quad 0 = (u - v)^2 - r(u - v) - s. \]
Writing \(c = u^2, d = v^2 \), these become
\[0 = c + d + (uv + vu) - p(u + v) - q \]
and \[0 = c + d - (uv + vu) - r(u - v) - s, \]
and adding gives
\[0 = (p + r)u + (p - r)v + (q + s - 2c - 2d)1. \]
By independence of \(\{ u, v, 1 \} \) it now follows that \(p = r = 0 \). So for the original equations to have been irreducible, we must have \(q, s < 0 \); in particular, \((u + v)^2 = q \in \mathbb{R}_{<0} \). Hence \(u + v \in A' \) as desired. \(\square \)
For \(u \in A' \), set
\[Q(u) := -u^2 \in \mathbb{R}. \]

V.B.7. LEMMA. \(Q \) is a positive-definite quadratic form on \(A' \).

Proof. Since \(A \) is a domain, \(Q(u) = 0 \iff u = 0 \). Moreover, for \(a \in \mathbb{R}, Q(au) = a^2Q(u) \), so \(Q \) is quadratic. Finally, \(Q(u) \geq 0 \) for all \(u \in A' \) (by definition of \(A' \)). \(\square \)

Write \(B(u, v) := Q(u + v) - Q(u) - Q(v) = -(uv + vu) \) for the associated positive-definite symmetric bilinear form. Now suppose \(A' \neq \{0\} \), i.e. \(A \supset \mathbb{R} \), and pick \(i \in A' \) such that \(Q(i) = 1 \); we can do this by rescaling any element in \(A' \setminus \{0\} \) by a real number. Then \(i^2 = -1 \), and we fix the copy of \(\mathbb{C} = \mathbb{R} + i\mathbb{R} = \mathbb{R}[i] \subset A \).

Next, suppose that \(A \supset \mathbb{C} \); then \(A' \supset i\mathbb{R} \), and we pick \(j \in A' \setminus i\mathbb{R} \) and take \(j := j - iB(i,j) \). This gives \(B(j, i) = B(j, i) - B(i, j)B(i, i) = 0 \), and rescaling \(j \) gives \(j \) with \(j^2 = -1 \) and \(j \perp i \) (i.e. \(0 = B(i, j) = ij + ji \)). Setting \(k = ij \), we compute
\[\begin{aligned}
 k^2 &= ijjj = -iijj = \frac{1}{(-1)(-1)} = -1 \\
 ik &= i^2j = -j = jii = -iji = -ki \\
 jk &= \cdots = -kj
\end{aligned} \]

\[\implies \begin{cases}
 k \in A' , \; k \perp i,j \\
 1,i,j,k \text{ R-linearly independent} \\
 \mathbb{R} + i\mathbb{R} + j\mathbb{R} + k\mathbb{R} = \mathbb{H} \subset A.
\end{cases} \]

Finally, suppose \(A \supset \mathbb{H} \). Then there exists \(\ell \in A' \) with \(Q(\ell) = 1 \) and \(\ell \perp i,j,k \). As above, this gives \(\ell i = -i\ell, \ell j = -j\ell, \) and \(\ell k = -k\ell \); substituting \(k = ij \) in the last of these gives
\[-(ij)\ell = \ell(ij) = (\ell i)j = -(i\ell)j = -i(\ell j) = i(j\ell) = (ij)\ell, \]
a contradiction. This proves the famous

V.B.8. THEOREM (Frobenius, 1877). Let \(A \) be a finite-dimensional division algebra over \(\mathbb{R} \). Then \(A = \mathbb{R}, \mathbb{C}, \) or \(\mathbb{H} \).
V.B.9. Remark. If one allows A to be nonassociative, then there is one more (8-dimensional) option, Cayley’s octonions $O = H \times H$ with the multiplication law

$$(q,r) \cdot (s,t) = (qs - r^*t, q^*t + rs)$$

where “$*$” denotes “quaternionic conjugation” ($i \mapsto -i$, $j \mapsto -j$, $k \mapsto -k$). More or less, this mimics the way you get H from $C \times C$ and C from $R \times R$. The octonions play a starring role in the explicit construction of the exceptional Lie groups G_2, F_4, E_6, E_7, E_8 in Cartan’s classification of simple Lie groups over C.

V.B.10. Remark. There are lots of non-isomorphic 4-dimensional “quaternion algebras” over Q, and there are lots of algebraic field extensions. But one might have held out hope that, say, there is an upper bound on the dimension of non-commutative Q-division algebras. Alas, this is not the case: for instance, if γ is an even integer not divisible by 8, the Q-algebra generated by x, y subject to the relations

$$x^3 + x^2 - 2x - 1 = 0, \ xy = y(x^2 - 2), \ y^3 = \gamma$$

is a division algebra of dimension 9. A classification of such examples was carried out by Dickson.

Finally, we consider the case of a division algebra A over a finite field F (i.e. $|F| < \infty$), with $n := \dim_F A < \infty$. Clearly $|A| = |F|^n$, and so (forgetting the F-action) A is a finite division ring. Conversely, if A a finite division ring, then $C(A)$ is a finite field and A is an algebra over it (cf. V.A.3), necessarily finite-dimensional.

V.B.11. Theorem (Wedderburn, 1905). Any finite division ring is commutative, hence a field.

V.B.12. Remark. The theorem means that algebraic field extensions furnish the only examples of finite-dimensional F-division algebras when $|F| < \infty$.
Proof of V.B.11. Set \(F = C(A), q = |F|, n = \dim_F A \). We need to show that \(n = 1 \), since this is equivalent to \(A = F \).

Applying the class equation to the group \(A^* = A \setminus \{0\} \) gives

\[|A^*| = \sum_i |\text{ccl}(x_i)| = \sum_i [A^* : \text{stab}(x_i)] \]

where \(x_i \) is a set of representatives for the conjugacy classes in \(A^* \). In particular, there are \(q - 1 \) one-element conjugacy classes, given by the elements \(x_1, \ldots, x_{q-1} \) of \(F^* \); each has stabilizer equal to all of \(A^* \). Each \(x_i \in A^* \setminus F^* \), on the other hand, is stabilized by the nonzero elements of a proper subring \(A_i \subset A \) containing \(F \). (Why?) These \(A_i \) are \(F \)-algebras, and so \(|A_i| = q^{m_i} \) with \(1 \leq m_i < n \), and \(|\text{stab}(x_i)| = q^{m_i} - 1 \). Thus (V.B.13) becomes

\[q^n - 1 = |A| - 1 = |A^*| = (q - 1) + \sum_{i \geq q} q^{m_i} - 1. \]

Now regard, for each \(i \), \(A \) as a module over \(A_i \). Clearly, it is free (\(A \) has no zero-divisors), of some finite rank \(d_i \). Moreover, \(A_i \) is a \(m_i \)-dimensional vector space over \(F \). So as \(F \)-vector spaces,

\[F^n = A = A_i \oplus \cdots \oplus A_i = F_{m_i} \oplus \cdots \oplus F_{m_i} \]

\(\implies n = m_i d_i \implies m_i \mid n \ (\forall i) \).

Finally, define the \(d \)th cyclotomic polynomial

\[f_d(\lambda) := \prod_{1 \leq j \leq d - 1} \text{if } (d, j) = 1 (\lambda - \zeta_d^j), \]

with \(f_1(\lambda) = 1 \) by convention; then we have

\[\lambda^n - 1 = \prod_{1 \leq d \leq n, d \mid n} f_d(\lambda), \]

\footnote{I have changed font for the field, because we want to think of \(A = F \) as a field extension of some original field \(\mathbb{F} \).}
and similarly for $\lambda^{m_i} - 1$. So

$$m_i \mid n \ (\forall i \geq q) \implies \frac{\lambda^n - 1}{\lambda^{m_i} - 1} \in (f_n(\lambda)) \subset \mathbb{Z}[\lambda] \ (\forall i \geq q)$$

$$\implies q^n - 1, \frac{q^n - 1}{q^{m_i} - 1} \in (f_n(q)) \subset \mathbb{Z} \ (\forall i \geq q)$$

$$\implies f_n(q) \mid q - 1 \quad \text{(V.B.14)}$$

$$\implies |f_n(q)||q - 1.$$

But

$$|f_n(q)| = \prod_{(j,n) = 1} |q - \zeta_n^j| > q - 1,$$

and we have a contradiction, unless $n = 1$. \qed