I.D. Algebraic closures

Recall that any polynomial \(f \in \mathbb{Q}[x] \) splits over \(\mathbb{C} \). Since the roots are algebraic over \(\mathbb{Q} \), they belong to \(\mathbb{Q} \) (cf. I.A.18), hence \(f \) actually splits in \(\overline{\mathbb{Q}}[x] \).

We have shown that every \(f \in K[x] \), for any \(K \), has a splitting field. But is there a field that does for \(K \) what \(\overline{\mathbb{Q}} \) does for \(\mathbb{Q} \) — an algebraic extension that splits every polynomial at once? Indeed there is, and we will construct it.

I.D.1. Definition. (i) \(L \) is algebraically closed if any \(f \in L[x] \) splits over \(L \).
(ii) \(L/K \) is an algebraic closure if \(L/K \) is algebraic and \(L \) is algebraically closed.

I.D.2. Example. \(\mathbb{C}/\mathbb{R} \) is an algebraic closure, but \(\mathbb{C}/\mathbb{Q} \) is not: there are only countably many polynomials over \(\mathbb{Q} \), hence countably many roots of such equations in \(\mathbb{C} \); but \(\mathbb{C} \) is uncountable, and the remaining elements must therefore be transcendental over \(\mathbb{Q} \). Of course, the point is that \(\overline{\mathbb{Q}}/\mathbb{Q} \) is an algebraic closure, and this argument shows that \(\overline{\mathbb{Q}} \subset \mathbb{C} \) is a proper subfield.

I.D.3. Proposition. The following are equivalent:
(i) \(L/K \) is an algebraic closure.
(ii) \(L/K \) is algebraic; and any irreducible \(f \in K[x] \) splits over \(L \).
(iii) \(L/K \) is algebraic; and \(L'/L \) algebraic \(\implies \) \(L' = L \).

Proof. (i) \(\implies \) (ii): clear from the definition.
(ii) \(\implies \) (iii): Given \(L'/L \) algebraic, \(L'/K \) is algebraic. Take \(\alpha' \in L' \) and its (irreducible) minimal polynomial \(m_{\alpha'} \in K[x] \). By (ii), \(m_{\alpha'} = \prod_i(x - \lambda_i) \) splits over \(L \), and so \(\alpha' = \lambda_j \) for some \(j \). That is, \(\alpha' \in L \); conclude that \(L = L' \).
(iii) \(\implies \) (i): Given \(f \in L[x] \), there exists a splitting field extension \(L'/L \). Since this is necessarily algebraic, we have \(L = L' \) by assumption, and \(f \) splits over \(L \). So \(L \) is algebraically closed. \(\square \)
In particular, there are no nontrivial algebraic extensions of fields like \(\mathbb{C} \) and \(\bar{\mathbb{Q}} \):

I.D.4. **Corollary.** If \(L \) is algebraically closed and \(L'/L \) is an algebraic extension, then \(L' = L \).

Proof. Take \(K = L \) in I.D.3(i), and conclude (iii). \(\square \)

If you had any lingering doubts about \(\bar{\mathbb{Q}} \) being an algebraic closure of \(\mathbb{Q} \), just take \(L = \mathbb{C} \) and \(K = \mathbb{Q} \) in the following:

I.D.5. **Corollary.** Given an extension \(L/K \), with \(L \) algebraically closed and \(L_0 := L_{\text{alg}}/K \subset L \) the subfield of elements algebraic over \(K \) (as in I.A.17). Then \(L_0 \) is an algebraic closure of \(K \).

Proof. Replace “\(L/K \)” in I.D.3(ii) by \(L_0/K \), and conclude (i). \(\square \)

We now formulate the main existence result:

I.D.6. **Theorem.** Any field \(K \) has an algebraic closure \(\bar{K} \).

Doomed Proof (V. 1.0). Let

\[
\mathcal{E} := \{ M \text{ field} \mid M \supset K, M/K \text{ algebraic} \},
\]

partially ordered by inclusion. Given a chain \(\mathcal{C} \), consider the set \(\mathcal{M}_C := \bigcup_{M \in \mathcal{C}} M \). If \(\alpha, \beta \in \mathcal{M}_C \), there exists \(M \in \mathcal{C} \) with \(\alpha, \beta \in M \) so that \(\alpha \beta, \alpha^{-1}, \alpha + \beta \in M \); hence \(\mathcal{M}_C \) is a field. Moreover, \(\mathcal{M}_C/K \) is algebraic since any \(\alpha \in \mathcal{M}_C \) is contained in some \(M \) algebraic over \(K \) (\(\alpha \) algebraic). Conclude that \(\mathcal{M}_C \in \mathcal{E} \) gives an upper bound for \(\mathcal{C} \); by Zorn, it follows that \(\mathcal{E} \) has a maximal element \(E \). By “(iii) \(\implies \) (i)” in I.D.3, \(E/K \) is an algebraic closure. \(\square \)

The problem is at the very beginning of the proof: what is meant by “ordered by inclusion”? That would work if all these \(M \)’s are subfields of a larger field — like an algebraic closure. Hmm. Some nice circular reasoning there.

There is a way to fix it by embedding all extensions inside the power set of \(K[x] \times \mathbb{N} \), but I’d rather not; instead, we take a different tack.
PROOF (V. 2.0). Let

\[S := \{(f, j) \mid f \in K[x] \text{ monic nonconstant}, 1 \leq j \leq \deg(f)\}, \]

and define a corresponding set \(X_S := \{x_j(f) \mid (f, j) \in S\} \) of formal indeterminates. For each monic nonconstant \(f = x^n - a_1(x)x^{n-1} + \cdots + (-1)^n a_n(f) \) (with \(a_i(f) \in K \)), we write formally

\[\prod_{j=1}^{n}(x - x_j(f)) = x^n - \sigma_1(x)x^{n-1} + \cdots + (-1)^n \sigma_n(x) \in K[X_S][x], \]

where \(\sigma_i(x) := \sum_{j_1 < \cdots < j_i} x_{j_1}(f) \cdots x_{j_i}(f) \) are elementary symmetric polynomials in the indeterminates, and put \(t_i(f) := \sigma_i(f) - a_i(f) \). I claim that the ideal \(I := \langle \{t_i(f)\}_{f,i} \rangle \subset K[X_S] \) is proper.

Suppose (on the contrary) that \(1 \in I \), i.e. that exist \(r_{\ell} \in K[X_S] \) and \(t_{i_{\ell}}(f_{\ell}) \) such that \(r_{1}t_{i_{1}}(f_{1}) + \cdots + r_{N}t_{i_{N}}(f_{N}) = 1 \). Let \(L/K \) be a splitting field extension for \(f_1 \cdots f_N \), and write (in \(L[x] \))

\[f_{\ell} = \prod_{j=1}^{d_{\ell}}(x - \alpha_{\ell j}) = x^{d_{\ell}} - a_1(f_{\ell})x^{d_{\ell}-1} + \cdots + (-1)^{d_{\ell}}a_n(f_{\ell}), \]

where the \(a_i(f) \)'s are clearly elementary symmetric polynomials in the \(\alpha_{\ell j} \)'s for each \(\ell \). Consider the evaluation map

\[\text{ev} : K[X_S] \rightarrow L \]

\[k \mapsto t(k) \]

\[x_j(f_{\ell}) \mapsto \alpha_{\ell j} \]

\[\{\text{other indeterminates in } X_S\} \mapsto 0. \]

We have \(\text{ev}(\sigma_i(f_{\ell})) = a_i(f_{\ell}) \) hence \(\text{ev}(t_i(f_{\ell})) = 0 \) (\(1 \leq \ell \leq N, 1 \leq i \leq n_{\ell} \)), which gives

\[1 = \text{ev}(1) = \text{ev}(r_{1})\text{ev}(t_{i_{1}}(f_{1})) + \cdots + \text{ev}(r_{N})\text{ev}(t_{i_{N}}(f_{N})) = 0, \]

which is absurd. So \(1 \not\in I \), and \(I \) is proper as claimed.

Recall from [Algebra I] that by Zorn’s Lemma, there exists a maximal proper ideal \(J \) such that \(I \subseteq J \subseteq K[X_S] \). This gives a field \(M := K[X_S]/J \), a quotient map \(q : K[X_S] \rightarrow M \), and (by composing \(q \) with \(K \hookrightarrow K[X_S] \)) an embedding \(j : K \hookrightarrow M \). Notice that
\[j(a_i(f)) = q(a_i(f)) = q(\sigma_i(f)) \] since \(I \subset J \). I claim that \(M / K \) is an algebraic closure of \(K \). Equivalently, we can show that I.D.3(ii) holds: \(M / K \) is algebraic and splits all of our polynomials \(f \).

For each \((f, j) \in S\), set \(\beta_j(f) := q(x_j(f)) \in M \). We have
\[
\begin{align*}
f &= x^n - a_1(f)x^{n-1} + \cdots + (-1)^n a_n(f) \in K[x] \setminus K \\
\Rightarrow j(f) &= x^n - j(a_1(f))x^{n-1} + \cdots + (-1)^n j(a_n(f)) \in M[x] \\
&= x^n - q(\sigma_1(f))x^{n-1} + \cdots + (-1)^n q(\sigma_n(f)) \\
&= q \left(x^n - \sigma_1(f)x^{n-1} + \cdots + (-1)^n \sigma_n(f) \right) \\
&= q \left(\prod_{j=1}^n (x - \beta_j(f)) \right),
\end{align*}
\]
so \(f \) splits over \(M \). Moreover, since \(K[X_S] \) is generated over \(K \) by the \(x_j(f) \), \(M \) is generated over \(K \) by their images \(\beta_j(f) \); being roots of \(f \) (for various \(f \)'s), these are algebraic over \(j(K) \). By I.A.21, \(M / K \) is algebraic.

\[\square \]

Turning to the uniqueness of algebraic closures, we first need a

I.D.7. Lemma. Let \(L / K \) be an algebraic extension, and \(K' \) an algebraically closed field. Then any embedding \(i: K \hookrightarrow K' \) extends to \(j: L \hookrightarrow K' \).

Proof. Define a partial order on
\[
S := \left\{ (M, \theta) \mid M \subset L \text{ a subfield containing } K, \text{ and } \theta: M \hookrightarrow K' \text{ an embedding with } \theta|_K = i \right\}
\]
by \((M, \theta) \leq (M', \theta') \iff M \subset M' \text{ and } \theta'|_M = \theta\).

Let \(C \subset S \) be any chain, and put \(N := \bigcup_{(M, \theta) \in C} M \). Each \(n \in N \) belongs to \(M \) for some \((M, \theta) \in C\), and we define a function \(\phi: N \hookrightarrow K' \) by \(\phi(n) := \theta(n) \). This is well-defined (use \(\theta'|_M = \theta \)), injective (otherwise injectivity would fail on some \(M \)), and has an upper bound (namely, \((N, \phi)\)). So Zorn hands us a maximal element \((M, \Theta)\) for \(S \).
Suppose $M \subset L$, and let $\alpha \in L \setminus M$. Clearly α is algebraic over M, with minimal polynomial m_α; and so $\Theta(m_\alpha) = 0$. Then I.C.14 produces an embedding $\Theta': M(\alpha) \rightarrow K'$ (sending $\alpha \mapsto \beta$) which extends Θ (hence i). This contradicts maximality of (M, Θ), and we conclude that $M = L$. □

I.D.8. THEOREM. Given $i: K \rightarrow L$ and $i': K \rightarrow L'$ two algebraic closures for K. Then there exists an isomorphism $j: L \rightarrow L'$ over K (i.e. such that $j \circ i = i'$).

PROOF. By the Lemma, there exists $j: L \rightarrow L'$ with $j \circ i = i'$. We must show j is onto.

Suppose $f \in K[x]$ is irreducible. Then $i(f)$ splits (over L) and so $i'(f) = j(i(f))$ splits (over $j(L)$). Hence $i': K \rightarrow j(L)$ is an algebraic closure for K.

Finally, since L'/K is algebraic, so is $L'/j(L)$. By (i) \implies (iii) in I.D.3, $L' = j(L)$ as desired. □

I.D.9. DEFINITION. In view of the uniqueness theorem I.D.8, we shall write \bar{K} for the algebraic closure of K.

Note that, as a general rule, \bar{K} has no nontrivial algebraic extensions.

A glance ahead. Here are two key conditions on an algebraic extension L/K which we will take up next.

First, L/K will be called normal if the condition

$f \in K[x]$ irreducible \implies f splits over L or has no roots in L

holds. Equivalently, for each $\alpha \in L$ its minimal polynomial $m_\alpha \in K[x]$ splits over L. This will link up nicely with our earlier use of “normal”, for groups.

Second, an irreducible polynomial $f \in K[x]$ is separable if it has $\deg(f)$ distinct roots in a splitting field. Accordingly, we call the extension L/K separable if the minimal polynomial $m_\alpha \in K[x]$ of each $\alpha \in L$ is separable. This is not an issue in characteristic zero: everything is separable.
To link with the material we have just covered, there is a notion of *separable algebraic closure*: instead of taking the full \(\bar{K} \), you take only the elements which have separable minimal polynomials. By the previous remark on characteristic zero, this does not affect \(\bar{Q} \).