
III. Representation Theory

Let G be a finite group and F a field. A representation of G over
F is a finite dimensional F-vector space V together with a homomor-
phism

π : G → AutF(V).

Among the basic classification results one finds that:

• all representations decompose as direct sums of a finite collection
of irreducible representations;
• these “irreps” are in 1-to-1 correspondence with the conjugacy

classes of G;
• they all occur in the “regular representation” of G on the vector

space F|G| = F〈{eg}g∈G〉, where g.eg′ := egg′ ; and
• since each irrep V occurs dim V times in the regular representa-

tion, the sum of the squares of their dimensions is |G|.
The approach we take begins from the more general setting of mod-
ules over a semisimple ring, briefly discussed in [Algebra I, §IV.B].
These are rings whose modules all decompose into direct sums of
irreducibles. By a theorem of Artin and Wedderburn, such a ring is
a product of matrix algebras over division rings, and contains copies
of all its simple modules.

How is this related to representations of groups? The point is that
these are the same thing as (finitely generated) F[G]-modules, where
F[G] is the group ring of G. Moreover, the regular representation is
just F[G] as a module over itself. So the above results follow natu-
rally once we can show that F[G] is a semisimple ring, which will
follow from a theorem of Maschke. We will then conclude with a bit
of character theory.
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III.A. Semisimple modules and rings

Since we are going to be dealing with noncommutative rings, we
should remember that there are left and right modules and ideals.
The notation RR [resp. RR] means that we are considering R as a left-
[resp. right-] R-module. We will usually deal with left-R-modules.

III.A.1. DEFINITION. Let R be a ring, and M a left R-module.
(i) M is simple if {0} and M are the only submodules. (If M is RR,
this is also called a simple left ideal.)
(ii) M is semisimple if, for every submodule N ⊆ M, there exists a
submodule N′ such that M = N ⊕ N′ as an R-module.

Obviously, simple modules are semisimple. Much less obviously:

III.A.2. THEOREM. The following are equivalent:
(a) M is semisimple;
(b) M is isomorphic to a direct sum of simple R-modules;
(c) M is an internal direct sum of simple R-submodules; and
(d) M is a sum of simple R-submodules.

PROOF. The equivalence of (a), (b) and (c) is [Algebra I, IV.B.33].
Clearly (c) implies (d). For (d) =⇒ (c), suppose M = ∑i∈I Mi, with
Mi simple. Zorn’s lemma conjures a nonempty subset J ⊂ I which
is maximal with respect to the property that ∑j∈J Mj = ⊕j∈JMj.
For any i ∈ I , Mi ∩ (⊕j∈JMj) is (by simplicity of Mi) either Mi or
{0}. Since the latter would contradict maximality of J , we see that
⊕j∈JMj contains every Mi hence is all of M. �

III.A.3. PROPOSITION. If M is semisimple, then any sub- or quotient-
module is also semisimple.

PROOF. Given submodules N ⊂ M′ ⊂ M, there exists N′ such
that N⊕N′ = M; hence M′ = N⊕ (N′∩M′) (by writing m′ = n+ n′

=⇒ n′ = m′ − n ∈ M′).
Given U ⊂ M/M′, by the 1st isomorphism theorem we have

M′ ⊂ Ũ ⊂ M such that Ũ/M′ = U. By semisimplicity of M, there
exists Ṽ ⊂ M with M = Ũ ⊕ Ṽ; and we set V := (Ṽ + M′)/M′.
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Certainly U + V = M/M′. Moreover, Ṽ ∩ Ũ = {0} together with
Ũ ⊃ M′ =⇒ (Ṽ + M′) ∩ Ũ = M′ =⇒ U ∩V = {0}. So M/M′ =
U ⊕V. �

As mentioned in §I.J, there is a version of composition series for
R-modules: this is a finite decreasing filtration

M = M0 ⊃ · · · ⊃ Mi−1 ⊃ Mi ⊃ · · · ⊃ Mn = {0}

of M by submodules, such that the successive quotients Mi−1/Mi

(called graded pieces) are simple R-modules.
Just as for groups, it may or may not exist, but the difficulties

are different: it is not hard to show that existence is equivalent to
M being both Artinian and Noetherian, which is to say that the de-
scending resp. ascending chain conditions — that there are no infi-
nite such chains — both hold. (One direction is clear; for the other
you’ll need to intersect the terms of a chain with a given composi-
tion series.) Viewed as modules over themselves, Z does not have a
composition series (why?), while Mn(C) does (see III.A.6 for a hint).

This comes with a version of Jordan-Hölder as well:

III.A.4. THEOREM. If M has a composition series, then the isomor-
phism classes and multiplicities of the simple graded pieces (though not
their location in the series) are unique.

PROOF. This is similar to the proof of I.J.13, but there are a couple
of nontrivial differences. The goal is to show that any two CS are
equivalent (‘≡’) in the sense of the Theorem: same length and same
factors (up to order). We induce on n := the minimal length of a
CS for M, assuming the result for modules admitting CS of “shorter
length”. Suppose (a) M ⊃ M1 ⊃ M2 ⊃ · · · and (b) M ⊃ N1 ⊃ N2 ⊃
· · · are CS, where we may assume (a) has length n. If M1 = N1 we
are done by induction.

If M1 6= N1, then set L2 := M1 ∩ N1, take a CS L2 ⊃ L3 ⊃ · · ·
for it (which certainly exists, e.g. by intersecting L2 ∩ Mi and re-
moving repetitions), and consider (c) M ⊃ M1 ⊃ L2 ⊃ L3 ⊃ · · ·
and (d) M ⊃ N1 ⊃ L2 ⊃ L3 ⊃ · · · . These are CS because M1/L2 =
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M1/(M1∩N1) = (M1 + N1)/N1 = M/N1 (the last ‘=’ from simplic-
ity of M/N1) makes M1/L2 simple, and the same goes for N1/L2.

Now M1 has a CS of length n− 1, so (a) ≡ (c) by induction. In
particular, (c) has length n. But then then (d) does too, so N1 has
a CS of length n − 1 and (d) ≡ (b) by induction. Finally, (c) ≡ (d)
by inspection (with 1st and 2nd graded pieces swapped), and so we
conclude finally that (a) ≡ (b). �

Turning to rings, we have the

III.A.5. DEFINITION. Let R be a ring.
(i) R is semisimple if every left R-module is semisimple.
(ii) R is simple if it is semisimple and (0) and R are its only 2-sided
ideals.

III.A.6. EXAMPLE. Consider R = Mn(C). Matrices with zeroes
in all but the jth column yield a copy of Cn which is closed under
left-multiplication by R. In this way we get n copies of the same
left R-module inside R itself, which have RR (i.e. R regarded as left
R-module) as their direct sum. (You can also think of them as left
ideals.) So RR is semisimple but not simple.

On the other hand, R is simple as a ring, because the 2-sided ideal
generated by any nonzero element of R is R itself. (Any nonzero
matrix has a nonzero entry. Multiply on left and right by eii and ejj

to get a matrix with only that nonzero entry. Then multiply by ek`’s
to move this nonzero entry to every spot.)

So R simple does not imply RR simple, but we do have

III.A.7. PROPOSITION. R semisimple ⇐⇒ RR semisimple.

PROOF. The forward implication is immediate from III.A.5(i). For
the converse, let M be a left R-module, and assume RR is semisim-
ple. Given any cyclic submodule Rz ⊂ M, there is an R-module
homomorphism R � Rz with kernel the left ideal ann(z), and Rz ∼=
R/ann(z). By III.A.3, R/ann(z) is semisimple. So M = ∑z∈M Rz is a
sum of simple submodules, hence semisimple by III.A.2. �
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III.A.8. COROLLARY. A semisimple ring is the direct sum of finitely
many simple left ideals.

PROOF. By III.A.7 and III.A.2, RR is a (possibly infinite) direct
sum of simple left ideals ⊕j∈J Ij. So 1 = 1R is a finite sum ∑m

j=1 ıj,
with ıj ∈ Ij. But then R = R1 = ∑m

j=1 Rıj = ∑m
j=1 Ij = ⊕m

j=1 Ij. �

III.A.9. REMARK. Some further notes and warnings are in order:
(a) It would be logical to call R in III.A.5(i) left semisimple, but

this is unnecessary: it will turn out to be equivalent to the same con-
dition involving right R-modules.

(b) The definition of semisimplicity for a ring R here is stronger
than in some texts, which require only that the Jacobson radical (the
intersection of left annihilators of all simple left R-modules) be zero.
To make this equivalent to our definition, you need to also require R
to be (left) Artinian, i.e. that there is no infinite descending sequence
of left ideals.

(c) The same thing as in (b) goes for simplicity of R, in that the
condition on ideals (which is often all that is reqiured) does not im-
ply semisimplicity in our sense. For instance, if C〈〈x, ∂〉〉 is the free al-
gebra on 2 generators, then the Weyl algebra C〈〈x, ∂〉〉/(∂x− x∂− 1)
has no nontrivial proper 2-sided ideals, but is not Artinian, as (∂) ⊃
(∂2) ⊃ (∂3) ⊃ · · · violates the descending chain condition on left
ideals.


