I.K. Discriminants, cubics, and quartics

We now embark on the systematic computation of Galois groups for specific polynomials, starting with low degree. Suppose that \(\text{char}(K) \neq 2 \), and let \(f \in K[x] \) be monic of degree \(n \), with splitting field \(L \) and Galois group \(G := \text{Gal}_K(f) := \text{Aut}(L/K) \). Let \(\alpha_1, \ldots, \alpha_n \) denote the roots \(R_f \subset L \) (with possible repetitions), and recall from I.G.17 that \(G \) acts transitively on \(R_f \iff f \) is irreducible.

I.K.1. Definition. The \textbf{discriminant} of \(f \) is \(\Delta := \delta^2 \), where

\[
\delta := \prod_{1 \leq i < j \leq n} (\alpha_i - \alpha_j) \in L
\]

Note that \(\delta \) depends on a choice of ordering of the \(\alpha_i \), but \(\Delta \) does not.

If \(f \) is separable, then the \(\alpha_i \) are distinct, \(L/K \) is Galois, and \(\Delta \) is \(G \)-invariant (since \(G \) just permutes the roots). Otherwise, there is a repeated root and \(\Delta \) is obviously 0. So we see that

(I.K.2) \(\Delta \in K \)

always holds. In fact, there are formulas (for any \(n \)) for \(\Delta \) in terms of (polynomials in) the coefficients of \(f \). So computationally speaking, \(\Delta \) actually precedes \(\delta \); and for this reason I will sometimes write \(\sqrt{\Delta} \) instead of \(\delta \).

I.K.3. Theorem. (i) \(\Delta = 0 \implies f \) has a repeated root in \(L \).
(ii) \(\Delta \neq 0 \) and \(\sqrt{\Delta} \in K \implies G \leq \mathfrak{A}_n \).
(iii) \(\Delta \neq 0 \) and \(\sqrt{\Delta} \notin K \implies G \not\leq \mathfrak{A}_n \) and \(K(\delta) = \text{Inv}(G \cap \mathfrak{A}_n) \).

Proof. If \(\Delta \neq 0 \), then \(f \) is separable and \(L/K \) Galois. Consider \(\sigma \in G \leq \mathfrak{S}_n \) as a permutation of the roots: by (slight) abuse of notation, \(\sigma(\alpha_i) = \alpha_{\sigma(i)} \). Since the number of inversions\(^{35} \) in a permutation has the same parity as the number of transpositions,

(I.K.4) \(\sigma(\delta) = \prod_{i<j}(\alpha_{\sigma(i)} - \alpha_{\sigma(j)}) = \text{sgn}(\sigma)\delta. \)

\(^{35}\)These are pairs \((i,j) \) for which \(i < j \) but \(\sigma(i) > \sigma(j) \). To see the equality mod 2, note that each transposition changes the number of inversions by an odd number.
If $\delta \in K = \text{Inv}(G)$, then δ is G-invariant and (I.K.4) forces $G \leq \ker(\text{sgn}) = \mathfrak{A}_n$.

On the other hand, if $\delta \notin K$, then it isn’t G-invariant and (again by (I.K.4)) some $\sigma \in G$ has $\text{sgn}(\sigma) = -1$. By (I.K.2), $m_\delta = x^2 - \Delta$ and $[K(\delta):K] = 2$. Applying the FTGT to $[G:G \cap \mathfrak{A}_n] = 2$ yields $[\text{Inv}(G \cap \mathfrak{A}_n):K] = 2$; since $\delta \in \text{Inv}(G \cap \mathfrak{A}_n)$ (I.K.4) again), we get $K(\delta) = \text{Inv}(G \cap \mathfrak{A}_n)$. □

Clearly it would be useful to be able to compute Δ. Consider the $n \times n$ Vandermonde matrix $M = (\alpha^i_j)_{i,j=1,...,n}$. This clearly has $\det(M) = \delta$; and so

\[(I.K.5) \quad \Delta = \det(M^tM) = \det((\lambda_{i+j-2})_{i,j=1,...,n}), \quad \lambda_k := \sum_{\ell=1}^n \alpha^k_\ell,
\]

where the λ_k are the Newton symmetric polynomials $s_k(\alpha)$ in the roots. Recalling that these may be expressed in terms of the elementary symmetric polynomials $e_k(\alpha)$, which (up to $(-1)^k$) are just the coefficients of f, we see a route to general formulas.

I.K.6. Example. Let’s start with quadratics: $f(x) = x^2 + a_1x + a_0 = (x - \alpha_1)(x - \alpha_2)$. Then $\lambda_1 = \alpha_1 + \alpha_2 = -a_1$ and $\lambda_2 = \alpha_1^2 + \alpha_2^2 = (\alpha_1 + \alpha_2)^2 - 2\alpha_1\alpha_2 = a_1^2 - 2a_0$. The resulting discriminant

$$
\Delta = \begin{vmatrix} 2 & -a_1 \\ -a_1 & a_1^2 - 2a_0 \end{vmatrix} = 2a_1^2 - 4a_0 - a_1^2 = a_1^2 - 4a_0
$$

should look pretty familiar.

Cubics.

Turning to $f(x) = x^3 + a_2x^2 + a_1x + a_0$, the linear substitution $x = y - \frac{1}{3}a_2$ yields

$$
g(y) = y^3 - py - q, \quad \text{with } p = \frac{1}{3}a_2^2 - a_1 \quad \text{and } q = \frac{1}{3}a_1a_2 - \frac{2}{27}a_2^3 - a_0.
$$

Since this merely translates all roots by $\frac{a_2}{3}$, it doesn’t affect the discriminant, the splitting field, or the Galois group, but greatly simplifies the computation.

Now write λ_k and e_k for the (Newton and elementary) symmetric polynomials in the roots α_i of g; we have $e_1 = \alpha_1 + \alpha_2 + \alpha_3 = 0,$
$e_2 = -p$ and $e_3 = q$. By Newton’s identities we have

$$\begin{align*}
\lambda_1 &= e_1 = 0, \\
\lambda_2 &= e_1^2 - 2e_2 = 2p, \\
\lambda_3 &= e_1^3 - 3e_1e_2 + 3e_3 = 3q, \text{ and} \\
\lambda_4 &= e_1^4 - 4e_1^2e_2 + 4e_1e_3 + 2e_2^2 = 2p^2,
\end{align*}$$

which yield the discriminant

$$\begin{vmatrix}
3 & 0 & 2p \\
0 & 2p & 3q \\
2p & 3q & 2p^2
\end{vmatrix} = 4p^3 - 27q^2.$$

Assuming that char$(K) \neq 2, 3$, f is separable (cf. (I.E.6)); and assuming f irreducible, $\Delta \neq 0$. Moreover, G acts transitively, so is either $A_3 \cong \mathbb{Z}_3$ or S_3. By Theorem I.K.3, we have

$$G \cong \mathbb{Z}_3 \iff (\delta =) \sqrt{\Delta} \in K;$$

and in either case, $[L:K(\delta)] = 3$ and $\text{Aut}(L/K(\delta)) \cong \mathbb{Z}_3$.

To enclose L/K in a root tower, first adjoin a cube root of unity ζ to K, followed by δ; note that $L(\zeta)/K$ is a SFE (for $(x^3 - 1)g(x)$) hence Galois. The tower of extensions $K \subset K(\delta) \subset L \subset L(\zeta)$ evidently has total degree 3, 6, or 12; this forces $L(\zeta)/K(\delta, \zeta)$ to be of order 3 hence cyclic (with generator σ). By I.J.19, $L(\zeta) = K(\delta, \zeta, \theta)$ where $\theta^3 \in K(\delta, \zeta)$; and so our root tower is

$$K \subset K(\zeta) \subset K(\delta) \subset K(\zeta, \delta) = L(\zeta).$$

In fact, the proof of I.J.19 gives a formula for the cube root: we must take $\theta = \theta_+ := \alpha_1 + \zeta\alpha_2 + \zeta^2\alpha_3$, since then applying σ sends $\alpha_1 \mapsto \alpha_2 \mapsto \alpha_3 \mapsto \alpha_1 \mapsto \theta_+ \mapsto \zeta^2\theta_+ \mapsto \theta^3_+ \mapsto \theta_+ \in K(\zeta, \delta)$. Writing $\theta_- := \alpha_1 + \zeta^2\alpha_2 + \zeta\alpha_3$, we evidently have $\sigma(\theta_-) = \zeta\theta_-$, and so $\theta_+\theta_- \in K(\zeta, \delta)$ as well.

We can use this to compute the roots α_i of g. First observe that

$$\theta_+\theta_- = \alpha_1^2 + \alpha_2^2 + \alpha_3^2 + (\zeta + \zeta^2)(\alpha_1\alpha_2 + \alpha_1\alpha_3 + \alpha_2\alpha_3) = \lambda_2 - e_2 = 3p,$$
while
\[\theta^3_+ + \theta^3_- = (a_1 + \zeta a_2 + \zeta^2 a_3)^3 + (a_1 + \zeta a_2 + \zeta^2 a_3)^3 + (a_1 + a_2 + a_3)^3 \]
\[= 3(a_1^3 + a_2^3 + a_3^3) + 18a_1a_2a_3 \]
\[= 3\lambda_3 + 18e_3 = 9q + 18q = 27q. \]

Therefore
\[(y - \theta^3_+)(y - \theta^3_-) = y^2 - (\theta^3_+ + \theta^3_-)y + (\theta^3_+ \theta^-)^3 = y^2 - 27qy + 27p^3, \]
which by (I.K.7) and the quadratic formula yields
\[(\text{I.K.9}) \quad \theta^3_\pm = \frac{27}{2}q \pm \frac{3}{2}\sqrt{-3\Delta} = \frac{27}{2}q \pm \frac{3}{2}(2\zeta + 1)\delta. \]

Finally, solving the linear system
\[\begin{cases}
\alpha_1 + \alpha_2 + \alpha_3 &= 0 \\
\alpha_1 + \zeta\alpha_2 + \zeta^2\alpha_3 &= \theta_+ \\
\alpha_1 + \zeta^2\alpha_2 + \zeta\alpha_3 &= \theta_-
\end{cases} \]
for the roots gives (up to reordering)
\[(\text{I.K.10}) \quad \alpha_1 = \frac{1}{3}(\theta_+ + \theta_-), \quad \alpha_2 = \frac{1}{3}(\zeta^2\theta_+ + \zeta\theta_-), \quad \alpha_3 = \frac{1}{3}(\zeta\theta_+ + \zeta^2\theta_-), \]
which together with (I.K.9) and (I.K.7) constitute Cardano’s formulas, published in 1545. In fact, Cardano’s book also contained a method for solving quartics by radicals.

Quartics. Continuing to assume char\((K) \neq 2, 3\), consider \(f(x) = x^4 + a_3x^3 + a_2x^2 + a_1x + a_0\), and again make a linear substitution \(x = y - \frac{a_3}{4}\) to replace this by \(g(y) = y^4 + py^2 + qy + r\). Assuming \(f\) irreducible \((\implies \Delta \neq 0)\), we know that \(G := \text{Gal}_K(f)\) is a transitive subgroup of \(S_4\), hence limited to the possibilities \(S_4, A_4, D_4, V_4,\) and \(Z_4\). We see right away from Theorem I.K.3 that
- if \(\delta \in K\), then \(G \cong A_4\) or \(V_4\), while
- if \(\delta \notin K\), then \(G \cong S_4, D_4\) or \(Z_4\).

To go further, we need to consider the cubic resolvent of \(g\) and its splitting field, starting with the latter.
Recall that $V_4 = \{1, (12)(34), (13)(24), (14)(23)\}$ is a normal subgroup of S_4, so that $H := V_4 \cap G \leq G$. (In fact $H = V_4$ unless $G = ((1234)) \cong Z_4$, in which case $H = Z_2$.) Inside our splitting field L for g, consider then $M := \text{Inv}(H)$, with $\text{Aut}(L/M) \cong H \leq V_4$ and

$$\text{Aut}(M/K) \cong G/H \cong G/(G \cap V_4) \cong GV_4/V_4 \leq S_4/V_4 \cong S_3,$$

which certainly suggests that M/K should be the SFE of a cubic polynomial.

To determine M, write $g(y) = \prod_{i=1}^{4}(y - \alpha_i)$, with $\sum_i \alpha_i = 0$. Taking $\beta_{ij} := \alpha_i + \alpha_j$, their squares

$$\beta_{12}^2 = -\beta_{12}\beta_{34}, \quad \beta_{13}^2 = -\beta_{13}\beta_{24}, \quad \text{and} \quad \beta_{14}^2 = -\beta_{14}\beta_{23}$$

are evidently fixed by V_4, and so belong to M. Conversely, if σ is a permutation of roots fixing these squares, then $\sigma \in V_4$. So

$$\text{Aut}(L/M) \leq \text{Aut}(L/K(\beta_{12}^2, \beta_{13}^2, \beta_{14}^2)) \leq H = \text{Aut}(L/M)$$

forces both \leq's to be $=$'s, and $M = K(\beta_{12}^2, \beta_{13}^2, \beta_{14}^2)$.

One then computes

\[
\begin{cases}
\beta_{12}^2 + \beta_{13}^2 + \beta_{14}^2 = -2\sum_{i<j} \alpha_i \alpha_j = -2p, \\
\beta_{12}^2 \beta_{13}^2 + \beta_{12}^2 \beta_{14}^2 + \beta_{13}^2 \beta_{14}^2 = p^2 - 4r, \\
\beta_{12} \beta_{13} \beta_{14} = -q \quad (\implies \beta_{12}^2 \beta_{13}^2 \beta_{14}^2 = q^2),
\end{cases}
\]

which obviously belong to K, making M the splitting field of the cubic resolvent

(I.K.11) \hspace{1cm} F(z) := z^3 + 2pz^2 + (p^2 - 4r)z - q^2 \in K[x]

of g. By Cardano’s formula, we can construct the roots $\beta_{12}^2, \beta_{13}^2, \beta_{14}^2$ of F by taking square and cube roots. Then we obtain $\beta_{12}, \beta_{13}, \beta_{14}$ by taking further square roots (signs compatible with $\beta_{12}\beta_{13}\beta_{14} = -q$). Adjoining these to M yields L, since we now obtain the roots

\[
\begin{cases}
\alpha_1 = \frac{1}{2}(\beta_{12} + \beta_{13} + \beta_{14}), \\
\alpha_2 = \frac{1}{2}(\beta_{12} - \beta_{13} - \beta_{14}), \\
\alpha_3 = \frac{1}{2}(-\beta_{12} + \beta_{13} - \beta_{14}), \\
\alpha_4 = \frac{1}{2}(-\beta_{12} - \beta_{13} + \beta_{14})
\end{cases}
\]
of g by “solving the linear system” as before. Incorporating the cube root of unity ζ, we therefore have the desired root tower: adjoin ζ to K, then the square root of the discriminant of (I.K.11), then the cubic radical θ for (I.K.11), which gets us to $M(\zeta)$; finally, adjoining the square roots β_{1j} of elements of $M(\zeta)$ gets us to $L(\zeta)$.

Going back to the possibilities for the Galois group G of g (and f), we have the following table:\footnote{In order to make effective use of this, we need to know the discriminant. One can show that Δ is given by $256r^3 - 128p^2r^2 + 144pq^2r - 27q^4 = 16^2(2^3 - 3^3)$, we find that $\sqrt{\Delta} \notin \mathbb{Q}$. The resolvent is $F(z) =$}

<table>
<thead>
<tr>
<th>G</th>
<th>G/H</th>
<th>H</th>
<th>g irr/M?</th>
<th>F irr/K?</th>
<th>$\sqrt{\Delta} \in K$?</th>
<th>SFEs of F & g</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathfrak{A}_4</td>
<td>\mathcal{S}_3</td>
<td>V_4</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>$K \frac{6}{2} M \frac{4}{2} L$</td>
</tr>
<tr>
<td>A_4</td>
<td>Z_3</td>
<td>V_4</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>$K \frac{3}{2} M \frac{4}{2} L$</td>
</tr>
<tr>
<td>D_4</td>
<td>Z_2</td>
<td>V_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>$K \frac{2}{2} M \frac{4}{2} L$</td>
</tr>
<tr>
<td>V_4</td>
<td>{1}</td>
<td>V_4</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>$K \frac{1}{2} M \frac{4}{2} L$</td>
</tr>
<tr>
<td>Z_4</td>
<td>Z_2</td>
<td>Z_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>$K \frac{2}{2} M \frac{2}{2} L$</td>
</tr>
</tbody>
</table>

which leads for instance to the decision diagram

(I.K.12)

$$
\begin{array}{ccc}
\sqrt{\Delta} \in K? & F \text{ irr/} K? & \mathfrak{A}_4 \\
\downarrow & \downarrow & \downarrow \\
Y & Y & V_4 \\
N & N & \mathcal{S}_4 \\
\end{array}
\begin{array}{ccc}
F \text{ irr/} K? & g \text{ irr/} M? & D_4 \\
\downarrow & \downarrow & \downarrow \\
Y & Y & Z_4 \\
N & N & \end{array}
$$

However, one can often avoid computing Δ by finding the roots of the resolvent and/or g and making use of the right-hand column of the table instead.

I.K.13. Example. Consider $f(x) = x^4 + 4x + 2 (= g(x))$ over $K = \mathbb{Q}$. This is irreducible by Eisenstein. Computing $\Delta = 256r^3 - 128p^2r^2 + 144pq^2r - 27q^4 = 16^2(2^3 - 3^3)$, we find that $\sqrt{\Delta} \notin \mathbb{Q}$. The resolvent is $F(z) =$

\footnote{In order to make effective use of this, we need to know the discriminant. One can show that Δ is given by $256r^3 - 128p^2r^2 + 144pq^2r - 27q^4 = 16^2(2^3 - 3^3)$, we find that $\sqrt{\Delta} \notin \mathbb{Q}$. The resolvent is $F(z) =$}
\[z^3 - 8z - 16, \text{ which is "equivalent" to } \frac{1}{8} F(2z) = z^3 - 2z - 2, \text{ hence irreducible (again by Eisenstein). So the Galois group is } \mathfrak{S}_4. \]

For practice, you might try to find \(G \) for \(x^4 - 2x - 1 \), \(x^4 + 4x^2 + 2 \), and \(x^4 - 10x^2 + 4 \).