
IV. Commutative rings

If noncommutative rings are at the heart of the theory of lin-
ear representations of finite groups, then commutative rings under-
pin that of algebraic varieties and schemes. In this final stretch of
the course, we will cover just enough commutative algebra to reach
the Hilbert Nullstellensatz, which will give a bijective correspon-
dence between (i) varieties (solution sets of polynomial equations
in n variables) over an algebraically closed field k and (ii) radical
ideals (which contain f if they contain a power of f ) in the polyno-
mial ring k[x1, . . . , xn]. This is, in some sense, the foundational result
of algebraic geometry.

It is helpful to have a running example in mind while reading
through the definitions and proofs, starting with localization. For
some purposes R = Z will do, but R = C[x] (or C[x, y]) gives a more
geometric feel to the material, as it comprises the regular (think “al-
gebraic holomorphic”) functions on the “complex line” C. So when
localization away from an element r ∈ R tells us to consider the ring
of fractions R[1

r ], one can take r = x − a ∈ C[x] and think of the
functions of the form Q(x)

(x−a)k (Q polynomial), which are the regular
functions on C\{a} (hence the “away from”).

Similarly, when localization at a prime ideal P of R defines RP to
consist of fractions r

s (r ∈ R, s ∈ R\P), one can take P = (x− a) and
think of rational functions Q(x)

R(x) with x− a - R(x). These are regular
functions on “C minus everything but a” (by which one means the
complement of some finite point set not including a, or an “inverse
limit” of such complements). The upshot is that this leaves one with
only one maximal ideal, namely (x− a), in C[x](x−a), and quotient-
ing by it evaluates these rational functions at a (hence the “at”).
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194 IV. COMMUTATIVE RINGS

IV.A. Localization

Let R be a commutative ring. The aim of this section is to con-
struct rings of fractions which are “intermediate” between R and its
fraction field, in the sense that there are restrictions on the denomi-
nators which are allowed, and the result is (in general) not a field.

IV.A.1. DEFINITION. A subset S ⊂ R is said to be multiplicative
if S contains 1, does not contain 0, and

a, b ∈ S =⇒ ab ∈ S .

IV.A.2. EXAMPLE. Given a prime ideal P ⊂ R, R\P is multiplica-
tive (why?). Given an element r ∈ R, so is {rk}k≥0. These are the
most important examples.

Given a multiplicative subset S , define an equivalence relation
“∼” on R× S by

(IV.A.3) (r, s) ∼ (r′, s′) ⇐⇒ ∃ s1 ∈ S such that s1(s′r− sr′) = 0.

The RHS is equivalent to rs′ = r′s provided R has no zero-divisors.1

Taking the quotient by (IV.A.3), put

(IV.A.4) S−1R :=
R× S
∼ .

By “0” and “1” in S−1R we’ll mean the equivalence classes of (0, 1)
and (1, 1), respectively. These are distinct, since s1(1 · 1− 0 · 1) = 0 is
impossible. More generally, denote the equivalence-class of (r, s) by
r
s ∈ S−1R, and write r

s = r′
s′ to mean that (r, s) ∼ (r′, s′). We notice

right away that tr
ts = r

s for any t ∈ S , since 1(trs− rts) = 0. Clearly,
it’s consistent with all of this to write r = r

1 .

IV.A.5. PROPOSITION. S−1R is a commutative ring, which is a do-
main if R is. (In the special case where R is a domain and S = R\{0}, it
is the fraction field of R.)

1Clearly, it would have been a terrible idea to allow 0 ∈ S , because then everything
would be equivalent (and the quotient (IV.A.4) would be zero)!
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SKETCH. There are a lot of little checks here, beginning with the
well-definedness of multiplication r

s ·
r′
s′ := rr′

ss′ and addition r
s +

r′
s′ :=

rs′+r′s
ss′ . For instance, suppose r

s = r0
s0

; then for some s1 ∈ S , we have
s1(rs0 − sr0) = 0 =⇒ s1{rs0(s′)2 − sr0(s′)2 + ss0s′r′ − ss0r′s′} = 0
=⇒ r0s′+r′s0

s0s′ = rs′+r′s
ss′ =⇒ r0

s0
+ r′

s′ =
r
s +

r′
s′ . So addition is well-

defined. I leave the distributivity and associativity to you.
Clearly, a product r

s ·
r′
s′ =

rr′
ss′ is zero iff s1rr′ = 0 for some s1( 6= 0).

If R is a domain, this only happens if r = 0 or r′ = 0, in which
case r

s or r′
s′ is zero. For the parenthetical on the fraction field, see

[Algebra I, III.F.10]. �

The natural ring homomorphism

φS : R→ S−1R

r 7→ r (:= r
1)

(IV.A.6)

is evidently injective iff r
1 = 0

1 =⇒ r = 0, which is equivalent to S
containing no zero divisors. If S ⊂ R∗ then (IV.A.6) is also surjective
(hence an isomorphism) because every r

s already exists on the LHS.
Indeed, the whole point of these fraction rings is to turn the elements
of S into units: we have φS(S) ⊂ (S−1R)∗ since s · 1

s = 1. (This does
no good if they already were units!) In fact, (IV.A.6) has the universal
property of factoring any map sending S to units:

IV.A.7. THEOREM. Let f : R → T be a homomorphism satisfying
f (S) ⊂ T∗. Then there exists a unique homomorphism f̄ : S−1R → T
such that f̄ ◦ φS = f .

PROOF. Set f̄ ( r
s ) := f (s)−1 f (r), which we can do since f (s) ∈ T∗.

This is well-defined, since r
s = r′

s′ =⇒ s1(rs′ − sr′) = 0 =⇒
f (s1) f (rs′ − sr′) = 0 =⇒ f (rs′ − sr′) = 0 (since f (s1) ∈ T∗) =⇒
f (s)−1 f (r) = f (s′)−1 f (r′). Clearly f̄ (φS(r)) = f (r), and checking
φS a homomorphism is easy.

For the uniqueness, suppose g : S−1R → T has g ◦ φS = f . Then
1 = g(s · 1

s ) = g(s) · g(1
s ) =⇒ g( r

s ) = g(1
s )g(r) = g(s)−1g(r) =

f (s)−1 f (r) =⇒ g = f̄ . �
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Next we want to consider ideals in the fraction rings. Given an
ideal I ⊂ R, we can define one in S−1R by S−1 I := (I × S)/ ∼, and
this is compatible with sums, products, and intersections (of ideals).
But it is only interesting if I avoids the multiplicative subset:

IV.A.8. PROPOSITION. (i) S−1 I = S−1R ⇐⇒ S ∩ I 6= ∅.
(ii) Every ideal in S−1R is of the form S−1 I.

PROOF. (i) (⇐= ): s ∈ S ∩ I =⇒ 1S−1R = s
s ∈ S−1 I.

( =⇒ ): φ−1
S (S−1 I) = φ−1

S (S−1R) = R =⇒ 1 = φS(1R) = ı
s for

some ı ∈ I =⇒ s1(ı− s) = 0 for some s1 ∈ S =⇒ s1s = s1ı ∈ S ∩ I.

(ii) Let J ⊂ S−1R be an ideal. Then φ−1
S (J) =: I is an ideal in

R, and S−1 I = S−1R · φS(I) ⊂ S−1R · J ⊂ J. But if r
s ∈ J, then

φS(r) = r
1 = s

1 ·
r
s ∈ J =⇒ r ∈ φ−1

S (J) = I =⇒ r
s ∈ S−1 I. �

Given the central role of prime ideals in the structure of commu-
tative rings, the compatibility of this construction with primality is
of particular importance:

IV.A.9. LEMMA. If P ⊂ R is a prime ideal with P ∩ S = ∅, then
S−1P ⊂ S−1R is prime, and

(IV.A.10) φ−1
S (S−1P) = P.

PROOF. First we check (IV.A.10): clearly φS(P) (= P
1 ) ⊂ S−1P.

Conversely, r ∈ φ−1
S (S−1P) =⇒ φS(r) ∈ S−1P =⇒ r

1 = p
s (p ∈ P,

s ∈ S) =⇒ s1(sr− p) = 0 (for some s1 ∈ S) =⇒ (s1s)r = s1p ∈ P.
But s1s ∈ S hence /∈ P, so we must have r ∈ P since P is prime.

Now for primality of S−1P: suppose r
s ·

r′
s′ ∈ S

−1P. Then rr′
ss′ =

p
s0

,
whence s1s0rr′ = s1ss′p ∈ P. Since P is prime (and s1s0 /∈ P), we
must have rr′ ∈ P hence r ∈ P or r′ ∈ P, and then r

s or r′
s′ belongs to

S−1P. �

IV.A.11. THEOREM. There is a bijection

prime ideals in R
disjoint from S

←→ prime ideals in S−1R
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induced by
P 7−→ S−1P.

PROOF. The assignment P 7→ S−1P is injective by (IV.A.10). For
the surjectivity, let J ⊂ S−1R be prime; then P := φ−1

S (J) is an ideal
with S−1P = J, by the proof of IV.A.8(ii). It remains to show that P
is prime: so let ab ∈ P. Then φS(ab) = φS(a)φS(b) ∈ J =⇒ φS(a)
or φS(b) ∈ J =⇒ a or b ∈ φ−1

S (J) = P, done. �

Returning to the two key types of multiplicative sets from IV.A.2,
we have the

IV.A.12. DEFINITION. (i) Let S = R\P, with P ⊂ R a prime ideal.
Then RP := S−1R is called the localization of R at P.

(ii) Let S = {rk}k≥0, for some r ∈ R\{0}. Then R[1
r ] := S−1R is

called the localization of R away from r.

IV.A.13. COROLLARY. (i) Sending Q 7→ QP := S−1Q induces a
bijection from prime ideals of R contained in P to prime ideals of RP; and
PP = PRP is the unique maximal ideal of RP.

(ii) Similarly, prime ideals of R not containing r are in bijection with
prime ideals of R[1

r ].

PROOF. Most of this follows from IV.A.11. For the uniqueness
statement in (i), observe that a maximal ideal of RP is prime hence of
the form QP for Q ⊂ P prime; and then QP ⊂ PP ( =⇒ QP = PP.).
Also note in (ii) that r /∈ Q (and Q prime) implies that no power of r
belongs to Q. �

IV.A.14. DEFINITION. A local ring is a commutative ring with a
unique maximal ideal m.

By IV.A.13(i), the localization RP at a prime ideal P is a local ring.
If P = m is maximal, this has a nice relationship to the reduction mod
m map ρ : R � R/m. Since R/m =: km is a field, called the residue
field of m, ρ sends S := R\m to units. By the universal property
IV.A.7, ρ factors through maps

(IV.A.15) R→ Rm

ρm
� R/m.



198 IV. COMMUTATIVE RINGS

Since ρm maps onto a field, its kernel is a maximal ideal; this can only
be mRm. We conclude that R/m ∼= Rm/mRm.

IV.A.16. PROPOSITION. For a commutative ring R, the following are
equivalent:
(i) R is local;
(ii) all nonunits of R belong to some proper ideal; and
(iii) the nonunits of R form an ideal.

PROOF. (i) =⇒ (ii): Let m denote the maximal proper ideal of R.
Then a ∈ R nonunit =⇒ (a) ( R =⇒ (a) ⊂ m =⇒ a ∈ m.

(ii) =⇒ (iii): clear, since a proper ideal can’t contain units.
(iii) =⇒ (i): it is maximal and contains all proper ideals. �

We should say a few words about localization of R-modules. For
any R-module M and multiplicative subset S , we can define S−1M
just as in (IV.A.3)-(IV.A.4), only with “r ∈ R” replaced by “µ ∈ M”.
This is an S−1R-module with elements written as fractions µ

s . In
particular, when S = R\P with P prime, MP := S−1M is called the
localization of M at P.

Now recall that the annihilator of an R-module (or R-submodule,
or element in an R-module), written annR(·), is an ideal in R.

IV.A.17. LEMMA. If M is a f.g. R-module, then we have the equality

(IV.A.18) S−1annR(M) = annS−1R(S−1M)

of ideals in S−1R. (If we replace M by an element µ ∈ M in (IV.A.18), the
finite generation hypothesis on M may be dropped.)

PROOF. We know the RHS is of the form S−1 J by IV.A.8(ii). Writ-
ing I = annR(M), S−1 I annihilates S−1M hence S−1 I ⊂ S−1 J.
Conversely, writing µ1, . . . , µk for generators of M, any  ∈ J kills
µ1
1 , . . . , µk

1 . So there exist s1, . . . , sk ∈ S such that si µi = 0 (∀i), and
hence s1 · · · sk  ∈ I. Writing  = s1···sk 

s1···sk
∈ S−1 I, we see that J ⊂ S−1 I

hence S−1 J ⊂ S−1 I. �

IV.A.19. THEOREM. Let M be an R-module, and suppose Mm = {0}
for every maximal ideal m ⊂ R. Then M = {0}.
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PROOF. Given µ ∈ M, put I := annR(µ). For any maximal ideal
m ⊂ R, since µ

1 = 0 ∈ Mm (= {0}), IV.A.17 gives (with S = R\m)
S−1 I = annRm(0) = Rm = S−1R. By IV.A.8(i), I ∩ S 6= ∅ hence
I 6⊂ m. So I is contained in no maximal ideal, and thus I = R. But
then 1 ∈ R annihilates µ, i.e. µ = 1µ = 0.

Since µ ∈ M was arbitrary, we get M = {0}. �

IV.A.20. REMARK. Theorem IV.A.19 says that M is determined
by its localizations at maximal ideals. In fact, not just M, but its
submodules and quotient modules, like kernels and images of ho-
momorphisms.

This is really important in algebraic geometry, where R is typi-
cally a ring of regular functions on a variety X, and M represents
“sections” of some object, like a sheaf (or vector bundle), “over” X.
The maximal ideals correspond to “closed points” x in X, and the
localizations to functions resp. sections on a “limit of open neighbor-
hoods” of x, which form the “stalk” of the sheaf (or vector bundle).
For this reason we shall speak of Mm as a stalk of the module (at m).

Similarly, since m represents functions that vanish at x in this
analogy, setting them to zero (i.e. going modulo m) should corre-
spond to evaluation at x, e.g. in the fiber of a vector bundle over
x. Recall that mRm is the unique maximal ideal of Rm, and km :=
Rm/mRm

∼= R/m the residue field of m. The point is then that “evalu-
ation at x” corresponds to the quotient map M � M/mM, where
M/mM is a km-module, i.e. vector space. Moreover, this factors
through the localization, viz.

M→ Mm � Mm/mMm
∼= M/mM,

essentially by tensoring over R with (IV.A.15) (though I won’t ex-
plain this). We call the vector space M/mM the fiber of M at m.


