IV.D. Primary decomposition

Recall that in the passage from UFDs like \(\mathbb{Z}[\sqrt{-1}] \) to general rings of integers \(\mathcal{O}_K \), we were able to recover a version of unique factorization for ideals. For instance, in \(\mathbb{Z}[\sqrt{-5}] \), while 6 factors non-uniquely into irreducibles, the corresponding principal ideal (6) factors uniquely into a product of (non-principal) primes like \((2, 1 + \sqrt{-5}) \). We would like to have a similar result for ideals in arbitrary Noetherian rings.

However, in the proof of IV.C.11, it was mentioned that in many Noetherian rings, ideals don’t decompose as products of primes. Consider \(I = (x^2, y) \subset \mathbb{C}[x, y] \); then \(\text{Rad}(I) \supseteq (x, y) \) by IV.C.5, while maximality of \((x, y) \) and properness of \(\text{Rad}(I) \) (which e.g. doesn’t contain 1) force equality. So the only prime ideal containing \(I \) is \((x, y) \), of which \(I \) is clearly not a power. This suggests that we need to consider decompositions into a somewhat more general class of ideals.

There are problems even in the case of radical ideals. Consider \(I = (x, yz) \subset \mathbb{C}[x, y, z] \); this is the intersection of the primes \(P = (x, y) \) and \(Q = (x, z) \). But it is not their product \(PQ = (x^2, xy, xz, yz) \) (which is strictly smaller), and in fact it cannot be a product of primes at all (why?). So perhaps we should consider decomposing ideals as intersections instead of products.\(^3\)

The larger class of ideals we will need is the following:

IV.D.1. Definition. An ideal \(Q \subseteq R \) is **primary** if

\[
ab \in Q \text{ and } a \notin Q \implies b^n \in Q \text{ for some } n.
\]

(Equivalently: \(ab \in Q \) and \(b \notin \text{Rad}(Q) \) \(\implies a \in Q \).)

IV.D.2. Examples. (i) In \(R = \mathbb{Z} \), the primary ideals are the \((p^i)\):

\(^3\)We discussed intersections vs. products of ideals in commutative rings in [Algebra I, III.E.13(ii)], concluding that these are equal when the ideals are pairwise coprime. Otherwise, there are easy counterexamples like \((p)(p) = (p^2) \subsetneq (p) = (p) \cap (p) \) in \(\mathbb{Z} \). One important case where ideals are automatically coprime is that of distinct maximal ideals \(m, m' \), since their sum contains an element not in (say) \(m \) hence must be the whole ring.
If \(ab \in (p^t) \), then \(ab = mp^t \); and if \(p^t \mid a \), then some power of \(p \) divides \(b \) by unique factorization in \(\mathbb{Z} \). Hence a power of \(b \) is divisible by \(p^t \). This shows that \((p^t) \) is primary.

On the other hand, if \(I = (m) \) with \(m = \prod_{i=1}^{k} p_i^{t_i} \) (\(p_i \) distinct primes, \(k > 1 \)), then taking \(a = \prod_{i=2}^{k} p_i^{t_i} \) and \(b = p_1^{t_1} \), no power of \(b \) is in \(I \) even though \(a \notin I \) and \(ab \in I \).

(ii) In \(R = \mathbb{C}[x,y] \), \(I = (x^2,y) \) is a primary ideal, whereas \(P = (x,y) \) is prime. In fact, the latter is maximal since \(R/P = \mathbb{C} \) is a field; while \(x \notin I \) (but \(x^2 \in I \)) \(\implies \) \(I \) not prime.

To see that \(I \) is primary, note that \(fg \in I \iff fg = x^2F + yG \) (\(F,G \in R \)), and \(f \notin I \iff f(0,0) \neq 0 \) or \(f(0,0) = 0 \neq f_x(0,0) \). It follows that \(g(0,0) = 0 \), hence \(g(x,y) = xh_1(x,y) + yh_2(x,y) \) (\(h_i \in R \)) \(\implies \) \(g^2 = x^2h_1^2 + y\{2xh_1h_2 + yh_2^2\} \in I \).

IV.D.3. PROPOSITION. If \(Q \) is primary, then \(\text{Rad}(Q) \) is prime.

PROOF. Given \(ab \in \text{Rad}(Q) \) and \(a \notin \text{Rad}(Q) \), we have (for some \(n \in \mathbb{N} \)) \(a^n b^n = (ab)^n \in Q \) and \(a^n \notin Q \). Since \(Q \) is primary, we have \((b^n)^m \in Q \) for some \(m \), hence \(b \in \text{Rad}(Q) \). \(\square \)

Writing \(P =: \text{Rad}(Q) \), we say that \(Q \) is \textbf{P-primary}.

IV.D.4. EXAMPLES. (i) In \(\mathbb{Z} \), (27) is \((3) \)-primary.

(ii) In \(\mathbb{C}[x,y] \), \((x^2,y) \) is \((x,y) \)-primary.

(iii) If \(I \) is an ideal in a commutative ring \(R \) with \(\text{Rad}(I) \) a maximal ideal, then \(I \) is primary. Indeed, given \(ab \in I \), with \(b \notin \text{Rad}(I) \), we have that (since \(\text{Rad}(I) \) is the only maximal ideal containing \(I \)) no maximal ideal contains both \(I \) and \(b \). So \(I + (b) = R \iff (a) = a(I + (b)) \subset I + (ab) = I \iff a \in I \).

(iv) In a ring of integers \(\mathcal{O}_K \), any prime ideal is maximal (cf. I.M.28). So if an ideal \(I \subset \mathcal{O}_K \) has prime radical \(P =: \text{Rad}(I) \), then \(I \) is primary. Again, \(P \) is the only prime ideal containing/dividing \(I \), and so by unique ideal factorization in \(\mathcal{O}_K \), \(I = P^k \) for some \(k \).

IV.D.5. WARNING. The converse of IV.D.3 is \textit{false}. For example, in \(R = \mathbb{C}[x,y] \), \(I = (xy,y^2) \) is not primary: \(yx \in I \) and \(y \notin I \), but no power of \(x \) is in \(I \). However, \(\text{Rad}(I) = (xy,y) = (y) \) is prime.
In fact, even a power of a (non-maximal) prime ideal can fail to be primary (HW).

IV.D.6. **Proposition.** Given \(Q, P \subset R \) ideals,

\[
Q \text{ is } P\text{-primary} \iff \begin{cases} Q \subset P \subset \text{Rad}(Q), & \text{and} \\ ab \in Q, a \notin Q \implies b \in P \end{cases} \tag{\ast}
\]

Proof. Note that the LHS is actually three statements: that \(P \) is prime, \(Q \) is primary, and \(\text{Rad}(Q) = P \).

(\(\iff \)): By (\(\ast \)), if \(a, b \in Q \) and \(a \notin Q \), then \(b \in P \subset \text{Rad}(Q) \) hence \(b^n \in Q \); and so \(Q \) is primary. It remains to show that \(\text{Rad}(Q) \subset P \). Given \(b \in \text{Rad}(Q) \), let \(n \) be the minimal exponent for which \(b^n \in Q \).

If \(n = 1 \), then \(b \in Q \subset P \) and we are done. If \(n > 1 \), then by minimality \(b^{n-1} \notin Q \), while \(b^{n-1}b = b^n \in Q \); and (\(\ast \)) gives \(b \in P \).

(\(\implies \)): We have \(Q \subset \text{Rad}(Q) = P \); and if \(ab \in Q \) and \(a \notin Q \), then \(b^n \in Q \implies b \in \text{Rad}(Q) = P \).

IV.D.7. **Lemma.** If \(Q_1, \ldots, Q_n \) are \(P \)-primary ideals, then \(\cap_i Q_i \) is \(P \)-primary.

Proof. Given \(\text{Rad}(Q_i) = P \) (\(\forall i \)), by IV.C.7(ii) we already know that \(\text{Rad}(\cap_i Q_i) = \cap_i \text{Rad}(Q_i) = \cap_i P = P \). (But we still have to show that \(\cap_i Q_i \) is primary!) If \(ab \in \cap_i Q_i \) but \(a \notin \cap_i Q_i \), then for some \(i \) we have \(a \notin Q_i \) (and \(ab \in Q_i \)) hence \(b \in P \) by IV.D.6(\(\implies \)) for \(Q_i \). Now applying IV.D.6(\(\iff \)) for \(\cap_i Q_i \) shows the latter is indeed (\(P \)-)primary.

We are now ready to introduce the more general notion of decomposition that we will seek.

IV.D.8. **Definition.** An ideal \(I \subset R \) has a primary decomposition if \(I = Q_1 \cap \cdots \cap Q_n \) with each \(Q_i \) primary. This decomposition is reduced if (i) no \(Q_i \) contains \(\cap_{j \neq i} Q_j \) and (ii) the radicals \(\text{Rad}(Q_i) \) are all distinct. The prime ideals \(P_i := \text{Rad}(Q_i) \) are called the associated primes of the decomposition.

For brevity, I will use the abbreviations PD and RPD.
IV.D. PRIMARY DECOMPOSITION

IV.D.9. **Proposition.** If an ideal \(I \) has a PD, then it has an RPD.

Proof. If (i) in IV.D.8 fails for some \(Q_i \), i.e. \(Q_i \supset \cap_{j \neq i} Q_j \), then removing \(Q_i \) does not change the full intersection. Assume we have made such removals, so that (i) holds.

To deal with (ii), suppose that (say) \(Q_1 \) and \(Q_2 \) are both \(P \)-primary (i.e. have the same radical). Without affecting the full intersection, we can replace them by \(Q_1 \cap Q_2 \), which is \(P \)-primary by IV.D.7. \(\square \)

The main result, to be proved below in a more general context, is:

IV.D.10. **Theorem.** Every (proper) ideal of a (commutative) Noetherian ring has an RPD, and this is unique up to reordering of factors provided the associated primes are all isolated (no \(P_i \) contains any \(P_j \)).

In the event that some \(P_i \) contains one of the other associated primes, it is called an embedded prime, and then the corresponding \(Q_i \) in the decomposition is not unique (but \(P_i \) itself is), see IV.D.17 below.

IV.D.11. **Examples.** (i) Of course, the simplest example of an RPD is \((p_1^{n_1} \cdots p_k^{n_k}) = (p_1^{n_1}) \cap \cdots \cap (p_k^{n_k})\) in \(R = \mathbb{Z} \), with associated primes \((p_i)\).

(ii) If \(R = \mathbb{C}[x, y] \), we can already get examples where the issue regarding embedded primes and non-uniqueness shows up: two RPDs for the ideal \(I = (xy, y^2) \) are \((y) \cap (x, y^2)\) and \((y) \cap (x + y, y^2)\). Here the associated primes are \((y)\) and \((x, y)\), the latter being “embedded”. (This terminology comes from what the ideal represents geometrically, which is the \(x \)-axis “union” an extra copy of the origin, a so-called “embedded point”.)

Primary modules.

IV.D.12. **Definition.** Let \(M \) be an \(R \)-module. A proper submodule \(A \subseteq M \) is **primary** if

\[(IV.D.13) \quad r \in R, m \notin A, rm \in A \implies r^n M \subseteq A \text{ for some } n \in \mathbb{Z}_{>0}.\]
(Equivalently, \(\text{Rad}(\text{ann}(M/A)) = \{ r \in R \mid \exists \mu \in M/A \text{ s.t. } r\mu = 0 \} \). That is, the elements a power of which annihilates \(M/A \) are the elements which kill some nonzero element of \(M/A \).

In the case where \(M \) is \(R \) viewed as an \(R \)-module, (IV.D.13) says exactly that \(A \) is a primary ideal. More generally:

IV.D.14. Proposition. If a proper submodule \(A \subseteq M \) is primary, then \(Q_A := \{ r \in R \mid rM \subseteq A \} (= \text{ann}(M/A)) \) is a primary ideal.

Proof. First, \(1 \notin Q_A \implies Q_A \neq R \); so \(Q_A \) is a proper ideal. Since

\[
rs \in Q_A \text{ and } s \notin Q_A \implies rsM \subseteq A \text{ and } sM \notin A \\
\implies \exists m \in M \text{ s.t. } sm \notin A \text{ and } r(sm) \in A \\
\implies r^n \in Q_A,
\]

\(Q_A \) satisfies IV.D.1. \(\square \)

IV.D.15. Definition. (i) Suppose \(A \subset M \) is primary, and put \(P := \text{Rad}(Q_A) (= \text{Rad}(\text{ann}(M/A))) \); we say that \(A \) is **\(P \)-primary**.

(ii) A submodule \(N \subset M \) has a **primary decomposition** if \(N = A_1 \cap \cdots \cap A_n \) with each \(A_i \) primary. Writing \(P_i := \text{Rad}(Q_{A_i}) \), this primary decomposition is **reduced** if the \(P_i \) are distinct and no \(A_i \) contains \(A_1 \cap \cdots \cap \widehat{A_i} \cap \cdots \cap A_n \). The \(P_i \) are again called **associated primes**.

IV.D.16. Proposition. If \(N \) has a PD, then it has an RPD.

Proof. See the proof of IV.D.9. The main new point is that we need to know the intersection \(A \cap B \) of two \(P \)-primary modules is a \(P \)-primary module. First note that \(Q_{A \cap B} = Q_A \cap Q_B \), which is \(P \)-primary by IV.D.7 since \(Q_A \) and \(Q_B \) are. Now, given \(rm \in A \cap B \) with \(m \notin A \cap B \), we have \(rm \in A \) and (say) \(m \notin A \), hence (by (IV.D.13)) \(r^n \in Q_A \) and thus \(r \in \text{Rad}(Q_A) = P = \text{Rad}(Q_{A \cap B}) \). But then we have a power \(r^m \in Q_{A \cap B} \) whence \(r^m M \subseteq A \cap B \). \(\square \)

We are now ready to prove a uniqueness result for RPDs.
IV.D.17. THEOREM. (i) Let $N \subsetneq M$ be an R-submodule with two RPDs $A_1 \cap \cdots \cap A_k = N = A_1' \cap \cdots \cap A_{\ell}'$ with A_i P_i-primary and A_j P_j'-primary. Then $k = \ell$ and, up to reordering, $P_i = P_i'$ ($\forall i$).

(ii) If P_i is an isolated prime (i.e. contains no other P_j), then in addition we get $A_i = A_i'$.

PROOF. (i) We may assume that P_1 is maximal (under inclusion) in $\{P_1, \ldots, P_\ell\}$. Suppose that no $P_j' = P_1$. Then $P_1 \not\subset P_j'$ ($\forall j$); and $P_1 \not\subset P_i$ ($\forall i > 1$) by definition (i.e. IV.D.15(ii)). So by the Prime Avoidance Lemma, $P_1 \not\subset P_2 \cup \cdots \cup P_k \cup P'_1 \cup \cdots \cup P'_\ell =: U$.

Let $r \in P_1 \setminus (P_1 \cap U)$. Then $r^n M \subset A_1$ for some n and we set

$$N^* := \{x \in M \mid r^n x \in N\} \subset N.$$

If $k = 1$ then $N = A_1 \implies N^* = M \implies N = M$ yields a contradiction. If $k > 1$ then $A_2 \cap \cdots \cap A_k \subset N^*$ and $A_1' \cap \cdots \cap A_{\ell}' \subset N^*$. I claim these inclusions are equalities. Consider $x \not\in A_2 \cap \cdots \cap A_k$. By (IV.D.13), $r^n x \in A_i$ ($i > 1$) would imply $r^n \in Q_{A_i}$ hence $r \in P_i$ (contradicting the choice of r), so $r^n x \not\in A_2 \cap \cdots \cap A_k$ hence $r^n x \not\in N$ and $x \not\in N^*$. Conclude that $N^* = A_2 \cap \cdots \cap A_k$. Similarly one shows $N^* = A_1' \cap \cdots \cap A_{\ell}'$ ($= N$). But then $A_2 \cap \cdots \cap A_k = N^* = N = A_1 \cap \cdots \cap A_k \subset A_1$ contradicts the definition of RPD.

We are forced by these contradictions to admit that $P_1 = P_i'$ for some j, say $j = 1$. Using $A_2 \cap \cdots \cap A_k = N^* = A_2' \cap \cdots \cap A_{\ell}'$ we reduce by induction to the base case $k = 1$.

In the $k = 1$ case, if $\ell > 1$ a symmetric argument shows each $P_j'_{j > 1}$ must equal something on the other side, and P_1 is the only possibility. But then $P_2' = P_1 = P_i'$ contradicts the definition of RPD again, and so $\ell = 1$.

(ii) Suppose P_1 is isolated, and A_1, A_1' are P_1-primary. For each $j \geq 2$, $\exists r_j \in P_j \setminus (P_j \cap P_1) \implies t := r_2 \cdots r_k \in (P_2 \cap \cdots \cap P_k) \setminus (P_1 \cap \cdots \cap P_k)$. Since A_j [resp. A_j'] is P_j-primary, $\exists n_j$ [resp. m_j] with $t^{n_j} M \subset A_j$ [resp. $t^{m_j} M \subset A_j'$] for $j \geq 2$. Put $n := \max\{n_j, m_j\}_{j=2}$, and define $\bar{N} := \{x \in M \mid t^n x \in N\}$.

I claim that $A_1 = \tilde{N}$. Given $x \in A_1$, we have $t^n x \in A_1 \cap \cdots \cap A_k = N \implies x \in \tilde{N}$. Conversely, $x \in \tilde{N} \implies t^n x \in N \subset A_1$. Since A_1 is P_1-primary and $t \notin P_1$, we have $t^m M \not\subset A_1$ ($\forall m \geq 0$). Now if $x \notin A_1$, then (since A_1 is primary) $t^n x \in A_1 \implies t^n q M \subset A_1$, a contradiction. So $x \in A_1$ and the claim is proved.

Similarly, we get $A'_1 = \tilde{N}$. So $A'_1 = A_1$ and we are done.

Turning to the existence of RPDs, we recall that finitely-generated modules over a Noetherian ring, including the ring itself, satisfy the ACC. In particular, IV.D.10 follows immediately from the next result together with IV.D.17.

IV.D.18. THEOREM. If M satisfies the ACC, then every $N \subsetneq M$ has an RPD.

PROOF. Say $S := \{ N \subset M \mid N \text{ has no PD} \}$ is nonempty. The ACC yields an upper bound for each chain, hence a maximal $\tilde{N} \in S$. Since N is certainly non-primary, there exist $r \in R$ and $m \in M \setminus N$ such that $rm \in N$ and $r^n M \not\subset N$ ($\forall n \in \mathbb{N}$).

Define an ascending chain by $M_n := \{ x \in M \mid r^n x \in N \}$; in particular, $M_0 = N$ and $M_1 \ni m$. By the ACC, this chain stabilizes at (say) k. Set $\tilde{N} := \{ x \in M \mid x = r^k y + z \text{ for some } y \in M, z \in N \}$. Clearly $N \subset M_k \cap \tilde{N}$.

Conversely, given $x \in M_k \cap \tilde{N}$, we have $x = r^k y + z$ and also $r^k x \in N$, hence

$$r^{2k} y = r^k (r^k y) = r^k (x - z) = r^k x - r^k z \in N$$

$$\implies y \in M_{2k} = M_k \implies r^k y \in N \implies x = r^k y + z \in N.$$ So $M_k \cap \tilde{N} = N$.

Now since $m \in M_k \setminus N$ and $r^k M \not\subset M$, we have $N \subsetneq M_k \subsetneq M$ and $N \subsetneq \tilde{N} \subsetneq M$. By maximality of N in S, \tilde{N} and M_k must have PDs. But then their intersection (namely N) does, by concatenating the PDs, a contradiction. So $S = \emptyset$ and IV.D.16 adds the final touch. □
Krull intersection theorem.

We conclude with an application of primary decomposition. This will require a couple of lemmas.

Proof. (\leftarrow): Because I annihilates M, M may be regarded also as an R/I-module. Since R/I satisfies the ACC [resp. DCC], so does M as R/I-module (by IV.B.8). As R-submodules are also R/I-submodules, they also satisfy the ACC [resp. DCC].

(\rightarrow): Writing $M = \sum_{j=1}^n Rm_j$ (by finite generation), we have $I = \bigcap_{j=1}^n \text{ann}(Rm_j) =: \bigcap_{j=1}^n I_j$. Consider the natural R-module homomorphisms

$$R/I \xrightarrow{\theta} \times_{j=1}^n R/I_j \xrightarrow{\cong} \oplus_{j=1}^n Rm_j.$$

As submodules of M, the R/I_j satisfy the ACC [resp. DCC]. Hence, so does the submodule R/I of their direct sum (cf. IV.B.7). □

IV.D.20. Lemma. Let $P \subset R$ be a prime ideal, M a Noetherian R-module, and $N \subset M$ a P-primary submodule. Then there exists $m \in \mathbb{N}$ such that $P^m M \subset N$. (In particular, any P-primary ideal in a Noetherian ring contains some power of P.)

Proof. Set $I := \text{ann}(M)$ and $\bar{R} := R/I$, so that M, N may be viewed as \bar{R}-modules. We have

$$I \subset \text{ann}(M/N) \subset P = \text{Rad(ann}(M/N)).$$

Clearly N is a \bar{P}-primary \bar{R}-submodule, and \bar{P} consists of the elements of \bar{R} some power of which kills M/N (knocks M into N).

Now M Noetherian $\xRightarrow{\text{IV.D}19}$ R Noetherian $\xRightarrow{\text{IV.C}11}$ P finitely generated $\implies \bar{P} = (\bar{p}_1, \ldots, \bar{p}_s)$. So (for each i) $\exists n_i \in \mathbb{N}$ such that $\bar{p}_i^{n_i} M \subset N$. Setting $m = n_1 + \cdots + n_s$, we have $P^m M \subset N$ hence $P^m M \subset N$. □
IV.D.21. Krull Intersection Theorem (v. 1). Given an ideal $I \subseteq R$ and a Noetherian R-module M, set $N = \bigcap_{n \geq 1} I^n M$. Then $IN = N$.

Proof. If $IN = M$, then $M = IN \subseteq N \implies N = M = IN$. So we may assume $IN \neq M$, and let $IN = N_1 \cap \cdots \cap N_s$ be a RPD with associated primes P_1, \ldots, P_s.

Suppose $I \subseteq P_i$ (for some i); then IV.D.20 $\implies P_i^m M \subseteq N_i$ (for some m) $\implies N = \bigcap_{n \geq 1} I^n M \subseteq I^m M \subseteq P_i^m M \subseteq N_i$.

On the other hand, if $I \not\subseteq P_i$, then let $r \in I \setminus (I \cap P_i)$. If $N \not\subseteq N_i$, then $\exists v \in N \setminus (N \cap N_i)$; and since $rv \in IN \subseteq N_i$, $v \not\in N_i$, and N_i is primary, we must have $r^n M \subseteq N_i$ (for some n) hence $r \in P_i$. This contradiction means that $N \subseteq N_i$.

So either way, $N \subseteq N_i$. Since i was arbitrary, $N \subseteq \bigcap N_i = IN$ hence $N = IN$. \hfill \Box

It will be easier to see what this means (at least for local rings) in “v. 2”, after we prove Nakayama’s theorem in the next section.