Problem Set 2

Hand in all.

(1) [Jacobson p. 229 #2] Construct a splitting field over \(\mathbb{Q} \) of \(x^5 - 2 \). Find its degree over \(\mathbb{Q} \).

(2) [Jacobson p. 229 #3] Determine a splitting field over \(\mathbb{Z}_p \) of \(x^{p^e} - 1 \), \(e \in \mathbb{N} \).

(3) Find splitting field extensions for \(x^3 - 5 \) over \(\mathbb{Z}_7, \mathbb{Z}_{11} \) and \(\mathbb{Z}_{13} \).

(4) Show that an algebraically closed field must be infinite.

(5) Suppose that \(K(\alpha)/K \) is a simple extension and that \(\alpha \) is transcendental over \(K \).
Show that \(K(\alpha) \) is not algebraically closed.

(6) [Jacobson p. 234 #2] Let \(f(x) \) be irreducible in \(F[x] \), where \(F \) is of characteristic \(p \).
Show that \(f(x) \) can be written as \(g(x^{p^e}) \), where \(g(x) \) is irreducible and separable.
Use this to show that every root of \(f(x) \) has the same multiplicity \(p^e \) (in a splitting field).

(7) [Jacobson p. 234 #4] Let \(F \) be imperfect of characteristic \(p \). Show that \(x^{p^e} - a \) is irreducible if \(a \not\in F^p \) and \(e = 0, 1, 2, \ldots \).

(8) Let \(p \) be a prime number. By factorizing \(x^{p-1} - 1 \) over \(\mathbb{Z}_p \), prove Wilson’s theorem:
i.e., show that \((p-1)! \equiv -1 \pmod{p} \). (Compare #5 on Problem Set 8 from Algebra I.)

(9) Let \(K \) be a field of positive characteristic.
 (i) Show that \(K \) is perfect if and only if the Frobenius homomorphism is an automorphism.
 (ii) If \(L/K \) is a totally inseparable extension (i.e. every element of \(L \setminus K \) is inseparable), show that the minimal polynomial of any element of \(L \) over \(K \) is of the form \(x^{p^n} - \alpha \), where \(\alpha \in K \).