Problem Set 3

(1) [Jacobson p. 229 #2] Construct a splitting field over \(\mathbb{Q} \) of \(x^5 - 2 \). Find its degree over \(\mathbb{Q} \).

(2) [Jacobson p. 229 #3] Determine a splitting field over \(\mathbb{Z}_p \) of \(x^{p^e} - 1, e \in \mathbb{N} \).

(3) Find splitting field extensions for \(x^3 - 5 \) over \(\mathbb{Z}_7, \mathbb{Z}_{11} \) and \(\mathbb{Z}_{13} \).

(4) Show that an algebraically closed field must be infinite.

(5) Suppose that \(K(\alpha)/K \) is a simple extension and that \(\alpha \) is transcendental over \(K \). Show that \(K(\alpha) \) is not algebraically closed.

(6) Let \(p \) be a prime number. By factorizing \(x^{p-1} - 1 \) over \(\mathbb{Z}_p \), prove Wilson’s theorem:
 i.e., show that \((p-1)! \equiv -1 \pmod{p} \). (I know it’s a retread from Algebra I, but this gives a quicker proof and new perspective.)

(7) [Jacobson p. 234 #2] Let \(f(x) \) be irreducible in \(F[x] \), where \(F \) is of characteristic \(p \). Show that \(f(x) \) can be written as \(g(x^{p^e}) \), where \(g(x) \) is irreducible and separable. Use this to show that every root of \(f(x) \) has the same multiplicity \(p^e \) (in a splitting field). [Hint: use I.E.6 and I.E.8 from the Algebra II notes.]