Hand in all.

(1) Given a finite group G, show that there exists a Galois extension L/K such that $\text{Aut}(L/K) \cong G$.

(2) [Jacobson, p. 243 #9] Show that $E = \mathbb{Q}(\sqrt{2}, \sqrt{3}, u)$ where $u^2 = (9 - 5\sqrt{3})(2 - \sqrt{2})$, is normal. Determine $\text{Gal}(E/\mathbb{Q})$.

(3) Factorize $x^{p^2} - x$ over \mathbb{Z}_p.

(4) Let $p < q$ be primes, $p \nmid q - 1$. Show that there is an extension L/\mathbb{Z}_q which is a splitting field extension for each of the polynomials $x^p - a$ ($a \in \mathbb{Z}_q^*$).

(5) Suppose that L/K is finite and separable and M/L is finite simple. Show that M/K is simple.

(6) Show that the simple transcendental extension $K(t)/K$ has infinitely many intermediate fields.

(7) [Jacobson, p. 151 #19] Prove that if $\varphi(n)$ is the Euler phi-function, then $\varphi(n) = \sum_{d|n} \mu(n/d)d$.

(8) [Jacobson, p. 295 #2] Find a primitive element for a splitting field over \mathbb{Q} of $x^5 - 2$.