Problem Set 6

[J] = Jacobson. (Note: problem 9 is based on Wednesday’s lecture.)

1. [J] p. 276 #2
2. [J] p. 277 #3
3. [J] p. 277 #4 and p. 243 #2
4. [J] p. 287 #1
5. Find the Galois groups of \(x^4 + 1 \) and \(x^5 + 1 \) over \(\mathbb{Q} \).
6. Suppose that \(p \) is prime and doesn’t divide \(m \), and let \(\varepsilon \) be a primitive \(m^{th} \) root of 1 over \(\mathbb{Z}_p \). Show that \([\mathbb{Z}_p(\varepsilon) : \mathbb{Z}_p] = k \), where \(k \) is the order of \(\bar{\varepsilon} \) in \(\mathbb{Z}_m^* \). Show that the cyclotomic polynomial \(\lambda_m \) is irreducible over \(\mathbb{Z}_p \) if and only if \(\mathbb{Z}_m^* \) is a cyclic group generated by \(\bar{p} \). When is \(\lambda_4 \) irreducible over \(\mathbb{Z}_p \)? How about \(\lambda_8 \)?
7. Using Thm 4.2.1 in [J], determine whether \(\lambda_{18} \) is irreducible over \(\mathbb{Z}_{23}, \mathbb{Z}_{43}, \mathbb{Z}_{73} \).
8. Suppose \(L/K \) is an extension, and that \(L \) is finitely generated over \(K \). Show that the field \(K_a \) of elements of \(L \) which are algebraic over \(K \) is finitely generated over \(K \).
9. Show that the primitive \(n^{th} \) roots of unity over \(\mathbb{Q} \) form a normal basis for the splitting field of \(x^n - 1 \) over \(\mathbb{Q} \) if and only if \(n \) has no repeated prime factors.