Hand in all.

(1) [Jacobson, p. 287 #1] Show that \(\sin(u) \) is transcendental for all algebraic \(u \neq 0 \).

(2) Suppose \(L/K \) is an extension, and that \(L \) is finitely generated over \(K \). Show that the field \(K_a \) of elements of \(L \) which are algebraic over \(K \) is f.g. over \(K \).

(3) Suppose that \(p \) is prime and doesn’t divide \(m \), and let \(\epsilon \) be a primitive \(m^{th} \) root of 1 over \(\mathbb{Z}_p \). Show that \([\mathbb{Z}_p(\epsilon) : \mathbb{Z}_p] = k\), where \(k \) is the order of \(\bar{p} \) in \(\mathbb{Z}_m^* \). Show that the cyclotomic polynomial \(\Phi_m \) is irreducible over \(\mathbb{Z}_p \) if and only if \(\mathbb{Z}_m^* \) is a cyclic group generated by \(\bar{p} \). When is \(\Phi_4 \) irreducible over \(\mathbb{Z}_p \)? How about \(\Phi_8 \)?

(4) Determine whether \(\Phi_{18} \) is irreducible over \(\mathbb{Z}_{23}, \mathbb{Z}_{43}, \text{ and } \mathbb{Z}_{73} \). (You may want to look at I.L.22 and the comments after it.)

(5) Show that the primitive \(n^{th} \) roots of 1 over \(\mathbb{Q} \) form a normal basis for the splitting field of \(x^n - 1 \) over \(\mathbb{Q} \) if and only if \(n \) has no repeated prime factors.

(6) [Jacobson, p. 300 #1] Show that if \(E \) is a finite field and \(F \) is a subfield, so that \(E/F \) is a cyclic extension, then the norm homomorphism \(N_{E/F} \) of \(E^* \) is surjective on \(F^* \).

(7) [Jacobson, p. 305 #3] Show that if \(G \) is a transitive subgroup of \(S_n \) containing an \((n-1)\)-cycle and a transposition, then \(G = S_n \).

(8) [Jacobson, p. 305 #4] Find \(\text{Gal}_Q(f) \) for \(f(x) = x^6 - 12x^4 + 15x^3 - 6x^2 + 15x + 12 \).